Image-Based malware classification using ensemble of CNN architectures (IMCEC)

dc.contributor.authorVasan, Danish
dc.contributor.authorAlazab, Mamoun
dc.contributor.authorWassan, Sobia
dc.contributor.authorSafaei, Babak
dc.contributor.authorZheng, Qin
dc.date.accessioned2026-02-06T18:37:34Z
dc.date.issued2020
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractBoth researchers and malware authors have demonstrated that malware scanners are unfortunately limited and are easily evaded by simple obfuscation techniques. This paper proposes a novel ensemble convolutional neural networks (CNNs) based architecture for effective detection of both packed and unpacked malware. We have named this method Image-based Malware Classification using Ensemble of CNNs (IM-CEC). Our main assumption is that based on their deeper architectures different CNNs provide different semantic representations of the image; therefore, a set of CNN architectures makes it possible to extract features with higher qualities than traditional methods. Experimental results show that IMCEC is particularly suitable for malware detection. It can achieve a high detection accuracy with low false alarm rates using malware raw-input. Result demonstrates more than 99% accuracy for unpacked malware and over 98% accuracy for packed malware. IMCEC is flexible, practical and efficient as it takes only 1.18 s on average to identify a new malware sample. (C) 2020 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.cose.2020.101748
dc.identifier.issn0167-4048
dc.identifier.issn1872-6208
dc.identifier.orcid0000-0002-1928-3704
dc.identifier.orcid0000-0002-1675-4902
dc.identifier.orcid0000-0002-7693-1042
dc.identifier.orcid0000-0001-5504-7496
dc.identifier.scopus2-s2.0-85081120981
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.cose.2020.101748
dc.identifier.urihttps://hdl.handle.net/11129/12536
dc.identifier.volume92
dc.identifier.wosWOS:000526984900016
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Advanced Technology
dc.relation.ispartofComputers & Security
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectMalware
dc.subjectCybersecurity
dc.subjectDeep learning
dc.subjectTransfer learning
dc.subjectFine-tuning
dc.subjectSVMs
dc.subjectSoftmax
dc.subjectEnsemble of CNNs
dc.titleImage-Based malware classification using ensemble of CNN architectures (IMCEC)
dc.typeArticle

Files