Predictive roles of environment, social, and governance scores on firms' diversity: a machine learning approach

dc.contributor.authorKoseoglu, Mehmet Ali
dc.contributor.authorArici, Hasan Evrim
dc.contributor.authorSaydam, Mehmet Bahri
dc.contributor.authorOlorunsola, Victor Oluwafemi
dc.date.accessioned2026-02-06T18:49:28Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractPurposeEnvironmental, social and governance (ESG) scores are compelling for firm strategy and performance. Thus, this study aims to explore ESG scores' predictive roles on global firms' diversity scores.Design/methodology/approachA total of 1,114 global firm-year data from the Thomson Reuters Eikon database was analyzed using machine learning algorithms like rpart, support vector machine, partykit and evtree.FindingsThe results reveal a positive association between diversity, resulting in greater comprehensiveness and relevance. Broadly speaking, the two factors with the most significant values for calculating the overall diversity scores of businesses are ESG scores and social scores. ESG scores and environmental scores are the most effective predictors for the diversity pillar and people development scores. In contrast, community and social scores are the most important predictor factors for the inclusion scores.Originality/valueThe research is particularly pertinent to managers and investors considering ESG issues while making decisions. The results indicate that leaders and practitioners should prioritize ESG elements and diversity problems to enhance performance.
dc.identifier.doi10.1108/NBRI-06-2023-0055
dc.identifier.endpage306
dc.identifier.issn2040-8749
dc.identifier.issn2040-8757
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85219212506
dc.identifier.scopusqualityQ3
dc.identifier.startpage284
dc.identifier.urihttps://doi.org/10.1108/NBRI-06-2023-0055
dc.identifier.urihttps://hdl.handle.net/11129/14902
dc.identifier.volume16
dc.identifier.wosWOS:001418834200001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherEmerald Group Publishing Ltd
dc.relation.ispartofNankai Business Review International
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFirm diversity
dc.subjectESG scores
dc.subjectMachine learning algorithms
dc.subjectInternational firms
dc.subjectM14
dc.titlePredictive roles of environment, social, and governance scores on firms' diversity: a machine learning approach
dc.typeArticle

Files