Mikusinski's operational calculus for general conjugated fractional derivatives

dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:36:05Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractAlgebraic conjugations (transmutations) can be useful in constructing modified versions of fractional calculus. In a general model of fractional calculus given by conjugating the operators of standard fractional calculus by an arbitrary linear bijection, it is possible to construct a version of Mikusinski's operational calculus. This process involves combining different algebraic ideas, from the conjugation itself to the ring and field of fractions that are part of Mikusinski's theory. As applications of the general theory thus obtained, we indicate how it can be used to solve fractional differential equations in various settings, including left-sided and right-sided fractional calculus on arbitrary intervals and fractional calculus with respect to functions.
dc.identifier.doi10.1007/s40590-023-00494-3
dc.identifier.issn1405-213X
dc.identifier.issn2296-4495
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85149001412
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1007/s40590-023-00494-3
dc.identifier.urihttps://hdl.handle.net/11129/12195
dc.identifier.volume29
dc.identifier.wosWOS:000939657600001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Int Publ Ag
dc.relation.ispartofBoletin De La Sociedad Matematica Mexicana
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional calculus
dc.subjectFractional differential equations
dc.subjectMikusinski's operational calculus
dc.subjectAlgebraic conjugation
dc.titleMikusinski's operational calculus for general conjugated fractional derivatives
dc.typeArticle

Files