On the structure of Picard-Fuchs type equations for Liouville-Arnold integrable Hamiltonian system on cotangent phase spaces

dc.contributor.authorSamoilenko, AM
dc.contributor.authorPrykarpatsky, AK
dc.contributor.authorTaneri, U
dc.date.accessioned2026-02-06T18:43:55Z
dc.date.issued2001
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThere are studied in detail the structure properties of integral submanifold imbedding mapping for a class of algebraically Liouville integrable Hamiltonian systems on cotangent phase spaces and related with it so called Picard-Fuchs type equations. It is shown that these equations can be in general regularly constructed making use of a given a priori system of involutive invariants and proved that their solutions in the Hamolton-Jacobi separable variable case give rise exactly to the integral submanifold imbedding mapping being as known a main ingredient for Liouville-Arnold integrability by quadratures of the Hamiltonian system under regard. (C) 2001 American Institute of Physics.
dc.identifier.doi10.1063/1.1409961
dc.identifier.endpage5370
dc.identifier.issn0022-2488
dc.identifier.issn1089-7658
dc.identifier.issue11
dc.identifier.scopus2-s2.0-0035605348
dc.identifier.scopusqualityQ2
dc.identifier.startpage5358
dc.identifier.urihttps://doi.org/10.1063/1.1409961
dc.identifier.urihttps://hdl.handle.net/11129/13823
dc.identifier.volume42
dc.identifier.wosWOS:000171629200023
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAip Publishing
dc.relation.ispartofJournal of Mathematical Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectSeparability
dc.titleOn the structure of Picard-Fuchs type equations for Liouville-Arnold integrable Hamiltonian system on cotangent phase spaces
dc.typeArticle

Files