Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation

dc.contributor.authorKanda, Patrick T.
dc.contributor.authorBalcilar, Mehmet
dc.contributor.authorBahramian, Pejman
dc.contributor.authorGupta, Rangan
dc.date.accessioned2026-02-06T18:43:59Z
dc.date.issued2016
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe conduct of inflation targeting is heavily dependent on accurate inflation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African inflation by means of non-linear models and using a long historical dataset of seasonally adjusted monthly inflation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient feature of such long data, hence the relevance of evaluating non-linear models' forecast performance. In the same vein, given the fact that 1969:10 marks the beginning of a protracted rising trend in South African inflation data, we estimate the models for an in-sample period of 1921:02-1966:09 and evaluate 1, 4, 12, and 24 step-ahead forecasts over an out-of-sample period of 1966:10-2013:01. In addition, using a weighted loss function specification, we evaluate the forecast performance of different non-linear models across various extreme economic environments and forecast horizons. In general, we find that no competing model consistently and significantly beats the LoLiMoT's performance in forecasting South African inflation.
dc.identifier.doi10.1080/00036846.2015.1122731
dc.identifier.endpage2427
dc.identifier.issn0003-6846
dc.identifier.issn1466-4283
dc.identifier.issue26
dc.identifier.orcid0000-0002-8917-6306
dc.identifier.orcid0000-0001-9694-5196
dc.identifier.scopus2-s2.0-84961210474
dc.identifier.scopusqualityQ2
dc.identifier.startpage2412
dc.identifier.urihttps://doi.org/10.1080/00036846.2015.1122731
dc.identifier.urihttps://hdl.handle.net/11129/13863
dc.identifier.volume48
dc.identifier.wosWOS:000372790900002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherRoutledge Journals, Taylor & Francis Ltd
dc.relation.ispartofApplied Economics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectInflation
dc.subjectforecasting
dc.subjectnon-linear models
dc.subjectweighted loss function
dc.subjectSouth Africa
dc.subjectC32
dc.subjectE31
dc.subjectE52
dc.titleForecasting South African inflation using non-linearmodels: a weighted loss-based evaluation
dc.typeArticle

Files