Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation
| dc.contributor.author | Kanda, Patrick T. | |
| dc.contributor.author | Balcilar, Mehmet | |
| dc.contributor.author | Bahramian, Pejman | |
| dc.contributor.author | Gupta, Rangan | |
| dc.date.accessioned | 2026-02-06T18:43:59Z | |
| dc.date.issued | 2016 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | The conduct of inflation targeting is heavily dependent on accurate inflation forecasts. Non-linear models have increasingly featured, along with linear counterparts, in the forecasting literature. In this study, we focus on forecasting South African inflation by means of non-linear models and using a long historical dataset of seasonally adjusted monthly inflation rates spanning from 1921:02 to 2013:01. For an emerging market economy such as South Africa, non-linearities can be a salient feature of such long data, hence the relevance of evaluating non-linear models' forecast performance. In the same vein, given the fact that 1969:10 marks the beginning of a protracted rising trend in South African inflation data, we estimate the models for an in-sample period of 1921:02-1966:09 and evaluate 1, 4, 12, and 24 step-ahead forecasts over an out-of-sample period of 1966:10-2013:01. In addition, using a weighted loss function specification, we evaluate the forecast performance of different non-linear models across various extreme economic environments and forecast horizons. In general, we find that no competing model consistently and significantly beats the LoLiMoT's performance in forecasting South African inflation. | |
| dc.identifier.doi | 10.1080/00036846.2015.1122731 | |
| dc.identifier.endpage | 2427 | |
| dc.identifier.issn | 0003-6846 | |
| dc.identifier.issn | 1466-4283 | |
| dc.identifier.issue | 26 | |
| dc.identifier.orcid | 0000-0002-8917-6306 | |
| dc.identifier.orcid | 0000-0001-9694-5196 | |
| dc.identifier.scopus | 2-s2.0-84961210474 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 2412 | |
| dc.identifier.uri | https://doi.org/10.1080/00036846.2015.1122731 | |
| dc.identifier.uri | https://hdl.handle.net/11129/13863 | |
| dc.identifier.volume | 48 | |
| dc.identifier.wos | WOS:000372790900002 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Routledge Journals, Taylor & Francis Ltd | |
| dc.relation.ispartof | Applied Economics | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Inflation | |
| dc.subject | forecasting | |
| dc.subject | non-linear models | |
| dc.subject | weighted loss function | |
| dc.subject | South Africa | |
| dc.subject | C32 | |
| dc.subject | E31 | |
| dc.subject | E52 | |
| dc.title | Forecasting South African inflation using non-linearmodels: a weighted loss-based evaluation | |
| dc.type | Article |










