A continuous GA+LDA for training set enhancement in illumination and scale invariant face recognition

dc.contributor.authorKarşili, Laika
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T17:58:50Z
dc.date.issued2010
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe face recognition performance of linear discriminant analysis (LDA) is considerably reduced by illumination and scale changes. Actually, performance of LDA is significantly affected by the number of images of each individual in the training set. Hence, the idea presented in this paper is to generate new images with illumination and scale changes, from the available frontal images in the training set, and add to training set such that the recognition rate of LDA is maximised over both the training and test sets. A continuous genetic algorithm is used to find the optimal sets of illumination and scale change parameters that make the success of LDA invariant to these facial variations. Compared to the application of LDA over the initially given face database, experimental evaluations demonstrated that the performance of LDA is significantly enhanced over the test set for illumination and scale changes, without decreasing the success for other test cases. © 2010 Inderscience Enterprises Ltd.
dc.identifier.doi10.1504/IJRIS.2010.036872
dc.identifier.endpage264
dc.identifier.issn1755-0556
dc.identifier.issue3-4
dc.identifier.scopus2-s2.0-84952971847
dc.identifier.scopusqualityQ4
dc.identifier.startpage257
dc.identifier.urihttps://doi.org/10.1504/IJRIS.2010.036872
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7754
dc.identifier.volume2
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofInternational Journal of Reasoning-based Intelligent Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectdimensionality reduction
dc.subjectface recognition
dc.subjectGAs
dc.subjectgenetic algorithms
dc.subjectLDA
dc.subjectlinear discriminant analysis
dc.subjectscale and illumination invariance
dc.titleA continuous GA+LDA for training set enhancement in illumination and scale invariant face recognition
dc.typeArticle

Files