Mikusinski's Operational Calculus for Fractional Operators with Different Kernels
| dc.contributor.author | Fernandez, Arran | |
| dc.contributor.author | Rani, Noosheza | |
| dc.date.accessioned | 2026-02-06T18:16:40Z | |
| dc.date.issued | 2024 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description | 12th IFAC Conference on Fractional Differentiation and its Application (ICFDA) -- JUL 09-12, 2024 -- Bordeaux, FRANCE | |
| dc.description.abstract | Mikusinski's operational calculus provides a way of applying the machinery of abstract algebra to the spaces and operators of calculus, thus allowing integro-differential equations to be solved by reducing them to algebraic equations. We summarise the application of this method to several operators of fractional calculus, defined by various convolution kernel functions at different levels of generality, and how the corresponding fractional differential equations can be solved. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) | |
| dc.description.sponsorship | Int Federat Automat Control,Linear Control Systems, TC 2.2,TC 1.1. Modelling, Identification and Signal Processing,TC 2.1. Control Design,TC 2.5. Robust Control,TC 4.2. Mechatronic Systems,IMS laboratory Crone team,Univ Bordeaux/Bordeaux INP/CNRS,ICFDA (Fractional Differentiation & its Applications),SAGIP (National Soc Automatic control, Industrial Engn & Production Engineering),GDR MACS (National Res Group Automatic Control & Production Engineering),Bordeaux INP,EnseirbMatmeca (engn school Bordeaux Inst Tech),IMS res laboratory,ROBSYS (Robustness Autonomous Systems, Res Network Univ Bordeaux),Nouvelle Aquitaine Regional Council | |
| dc.identifier.doi | 10.1016/j.ifacol.2024.08.193 | |
| dc.identifier.endpage | 225 | |
| dc.identifier.issn | 2405-8963 | |
| dc.identifier.issue | 12 | |
| dc.identifier.scopus | 2-s2.0-85203071056 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 220 | |
| dc.identifier.uri | https://doi.org/10.1016/j.ifacol.2024.08.193 | |
| dc.identifier.uri | https://hdl.handle.net/11129/8601 | |
| dc.identifier.volume | 58 | |
| dc.identifier.wos | WOS:001302134200037 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.ispartof | Ifac Papersonline | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | fractional calculus | |
| dc.subject | operational calculus | |
| dc.subject | fractional differential equations | |
| dc.subject | convolution kernels | |
| dc.title | Mikusinski's Operational Calculus for Fractional Operators with Different Kernels | |
| dc.type | Conference Object |










