On fractional calculus with general analytic kernels

dc.contributor.authorFernandez, Arran
dc.contributor.authorOzarslan, Mehmet Ali
dc.contributor.authorBaleanu, Dumitru
dc.date.accessioned2026-02-06T18:36:18Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractMany possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann-Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators. (C) 2019 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.amc.2019.02.045
dc.identifier.endpage265
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85062297779
dc.identifier.scopusqualityQ1
dc.identifier.startpage248
dc.identifier.urihttps://doi.org/10.1016/j.amc.2019.02.045
dc.identifier.urihttps://hdl.handle.net/11129/12290
dc.identifier.volume354
dc.identifier.wosWOS:000461602500018
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Inc
dc.relation.ispartofApplied Mathematics and Computation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional calculus
dc.subjectSpecial functions
dc.subjectConvergent series
dc.subjectOrdinary differential equation
dc.subjectVolterra integral equation
dc.titleOn fractional calculus with general analytic kernels
dc.typeArticle

Files