Maximum Entropy-Based Interference-Plus-Noise Covariance Matrix Reconstruction for Robust Adaptive Beamforming
| dc.contributor.author | Mohammadzadeh, Saeed | |
| dc.contributor.author | Nascimento, Vitor H. | |
| dc.contributor.author | de Lamare, Rodrigo C. | |
| dc.contributor.author | Kukrer, Osman | |
| dc.date.accessioned | 2026-02-06T18:49:43Z | |
| dc.date.issued | 2020 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | To ensure signal receiving quality, robust adaptive beamforming (RAB) is of vital importance in modern communications. In this letter, we propose a new low-complexity RAB approach based on interference-plus-noise covariance matrix (IPNC) reconstruction and steering vector (SV) estimation. In this method, the IPNC and desired signal covariance matrices are reconstructed by estimating all interference powers as well as the desired signal power using the principle of maximum entropy power spectrum (MEPS). Numerical simulations demonstrate that the proposed method can provide superior performance to several previously proposed beamformers. | |
| dc.description.sponsorship | Sao Paulo Research Foundation (FAPESP) through the ELIOT project [2018/12579-7, 2019/19387-9]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [19/19387-9, 18/12579-7] Funding Source: FAPESP | |
| dc.description.sponsorship | This work was supported in part by the Sao Paulo Research Foundation (FAPESP) through the ELIOT project under Grant 2018/12579-7 and Grant 2019/19387-9. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Guang Hua. | |
| dc.identifier.doi | 10.1109/LSP.2020.2994527 | |
| dc.identifier.endpage | 849 | |
| dc.identifier.issn | 1070-9908 | |
| dc.identifier.issn | 1558-2361 | |
| dc.identifier.orcid | 0000-0002-8793-2577 | |
| dc.identifier.orcid | 0000-0003-2322-6451 | |
| dc.identifier.scopus | 2-s2.0-85086717561 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 845 | |
| dc.identifier.uri | https://doi.org/10.1109/LSP.2020.2994527 | |
| dc.identifier.uri | https://hdl.handle.net/11129/15028 | |
| dc.identifier.volume | 27 | |
| dc.identifier.wos | WOS:000542924300002 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | |
| dc.relation.ispartof | Ieee Signal Processing Letters | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Covariance matrices | |
| dc.subject | Estimation | |
| dc.subject | Interference | |
| dc.subject | Entropy | |
| dc.subject | Correlation | |
| dc.subject | Array signal processing | |
| dc.subject | Robustness | |
| dc.subject | Covariance matrix reconstruction | |
| dc.subject | maximum entropy method | |
| dc.subject | robust adaptive beamforming | |
| dc.subject | spatial power spectrum | |
| dc.title | Maximum Entropy-Based Interference-Plus-Noise Covariance Matrix Reconstruction for Robust Adaptive Beamforming | |
| dc.type | Article |










