Recurrent neural network equalization for partial response shaping of magneto-optical readback signals

dc.contributor.authorOzgunes, I
dc.contributor.authorHacioglu, K
dc.contributor.authorKumar, BVKV
dc.date.accessioned2026-02-06T18:28:40Z
dc.date.issued1998
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionConference on Optical Data Storage '98 -- MAY 10-13, 1998 -- ASPEN, CO
dc.description.abstractIn this paper, use of recurrent neural network equalizer (RNNE) in place of linear equalizer (LE) to combat both linear and nonlinear distortions corrupting the Magneto-optical (MO) readback signal is discussed. It is shown that RNNE can outperform LE without introducing significant complexity. RNNE is used to equalize the MO recording readback signal corrupted by transition jitter, intersymbol interference (ISI) and additive white Gaussian Noise (AWGN) at a density of 50 kbpi. The MO signal is equalized to a, partial response (PR) (1 + D) using either the RNNE or the LE and the equalizer's mean-squared-error (MSE) performance is compared. Then, the equalized signal is passed through a detector and it is shown that a signal equalized to a PR (1 + D) shape can be detected using either a bit-by-bit type of detector (BD) or a sequence detector implemented via Viterbi Algorithm (VA). The bir-error-rate (BER) performance of ED is compared to that of the Viterbi detector and it is shown that PR equalization of MO readback signals using RNNE improves MSE performance over linear equalizer, allowing use of ED rather than LE+Viterbi Algorithm with comparable BERs.
dc.description.sponsorshipOSA Opt Soc Amer,IEEE/Lasers & Electro-Opt Soc,SPIE Int Soc Opt Engn
dc.identifier.doi10.1117/12.327941
dc.identifier.endpage167
dc.identifier.isbn0-8194-2851-5
dc.identifier.issn0277-786X
dc.identifier.orcid0000-0002-3692-1528
dc.identifier.scopusqualityQ4
dc.identifier.startpage159
dc.identifier.urihttps://doi.org/10.1117/12.327941
dc.identifier.urihttps://hdl.handle.net/11129/11064
dc.identifier.volume3401
dc.identifier.wosWOS:000076922000021
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherSpie-Int Soc Optical Engineering
dc.relation.ispartofOptical Data Storage '98
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectmagneto-optical
dc.subjectrecurrent neural network
dc.subjectpartial response
dc.subjectViterbi algorithm
dc.subjectlinear equalizer
dc.subjectnonlinear equalizer
dc.titleRecurrent neural network equalization for partial response shaping of magneto-optical readback signals
dc.typeConference Object

Files