Clustering based under-sampling for improving speaker verification decisions using AdaBoost

dc.contributor.authorAltinçay, H
dc.contributor.authorErgün, C
dc.date.accessioned2026-02-06T18:16:38Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description10th International Symposium on Structural and Syntactic Pattern Recognition/5th International Conference on Statistical Techniques in Pattern Recognition -- AUG 18-20, 2004 -- Lisbon, PORTUGAL
dc.description.abstractThe class imbalance problem naturally occurs in some classification problems where the amount of training samples available for one class may be much less than that of another. In order to deal with this problem, random sampling based methods are generally used. This paper proposes a clustering based sampling technique to select a subset from the majority class involving much larger amount of training data. The proposed approach is verified in designing a post-classifier using AdaBoost to improve the speaker verification decisions. Experiments conducted on NIST99 speaker verification corpus have shown that in general, the proposed sampling technique provides better equal error rates (EER) than random sampling.
dc.description.sponsorshipInst Telecommun,Inst Super Tecn,Int Assoc Pattern Recognit,Fund Luso-Amer Desenvolvimento
dc.identifier.endpage706
dc.identifier.isbn3-540-22570-6
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-35048817012
dc.identifier.scopusqualityQ3
dc.identifier.startpage698
dc.identifier.urihttps://hdl.handle.net/11129/8572
dc.identifier.volume3138
dc.identifier.wosWOS:000223398900076
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofStructural, Syntactic, and Statistical Pattern Recognition, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectModels
dc.titleClustering based under-sampling for improving speaker verification decisions using AdaBoost
dc.typeConference Object

Files