A Radon transform and PCA hybrid for high performance face recognition

dc.contributor.authorKarsili, Laika
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T18:28:25Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description7th IEEE International Symposium on Signal Processing and Information Technology -- DEC 15-18, 2007 -- Cairo, EGYPT
dc.description.abstractThis study presents a novel combination of Radon transform and linear and kernel PCA methods for high performance face recognition. Radon transform is well known in image processing due to its simplicity and invariance to rotation. It's discrete version is used to extract a number of characteristic features from 2-D facial images through taking discrete Radon transform over a set of angular directions. The resulting Radon transform features are projected into a lower dimensional space using principal component analysis through which principal components of the extracted features are determined. Finally, these principal components and a simple Euclidean distance measure are used for face recognition. Experimental evaluations over the well-known FERET database demonstrated that quite significant improvements are achieved from the hybridized Radon transformation and PCA approaches.
dc.description.sponsorshipIEEE,IEEE Signal Proc Soc,IEEE Comp Soc
dc.identifier.endpage55
dc.identifier.isbn978-1-4244-1834-3
dc.identifier.scopus2-s2.0-71649098468
dc.identifier.scopusqualityN/A
dc.identifier.startpage50
dc.identifier.urihttps://hdl.handle.net/11129/10933
dc.identifier.wosWOS:000256344200010
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2007 Ieee International Symposium on Signal Processing and Information Technology, Vols 1-3
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectComponent Analysis
dc.titleA Radon transform and PCA hybrid for high performance face recognition
dc.typeConference Object

Files