(?, ?)-Bernstein-Kantorovich operators

dc.contributor.authorAktuglu, Huseyin
dc.contributor.authorKara, Mustafa
dc.contributor.authorBaytunc, Erdem
dc.contributor.authorFidan, Saner
dc.date.accessioned2026-02-06T18:26:27Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this article, we introduce a new family of ( lambda , psi ) \left(\lambda ,\psi ) -Bernstein-Kantorovich operators which depends on a parameter lambda \lambda , derived from the basis functions of B & eacute;zier curves and an integrable function psi \psi . In this approach, all moments and central moments of the new operators can be obtained in terms of two numbers M 1 , psi {M}_{1,\psi } and M 2 , psi {M}_{2,\psi } , which are the integrals of psi \psi and psi 2 {\psi }<^>{2} , respectively. For operators L n ( f ; x ) {L}_{n}\left(f;\hspace{0.33em}x) with L n ( 1 ; x ) = 1 {L}_{n}\left(1;\hspace{0.33em}x)=1 , the order of approximation to a function f f by L n ( f ; x ) {L}_{n}\left(f;\hspace{0.33em}x) is more controlled by the term L n ( ( t - x ) 2 ; x ) {L}_{n}\left({\left(t-x)}<^>{2};\hspace{0.33em}x) . For our operators K n , lambda , psi ( f ; x ) {K}_{n,\lambda ,\psi }\left(f;\hspace{0.33em}x) , the second central moment K n , lambda , psi ( ( t - x ) 2 ; x ) {K}_{n,\lambda ,\psi }\left({\left(t-x)}<^>{2};\hspace{0.33em}x) depend on M 1 , psi {M}_{1,\psi } and M 2 , psi {M}_{2,\psi } . This means that in our new approach, it is possible to search for a function psi \psi with different values of M 1 , psi {M}_{1,\psi } and M 2 , psi {M}_{2,\psi } to make K n , lambda , psi ( ( t - x ) 2 ; x ) {K}_{n,\lambda ,\psi }\left({\left(t-x)}<^>{2};\hspace{0.33em}x) smaller. Using this new approach, we show that there exists a function psi \psi such that the order of approximation to a function f f by our new ( lambda , psi ) \left(\lambda ,\psi ) -Bernstein-Kantorovich operators is better than the classical lambda \lambda -Bernstein-Kantorovich operators on the interval [0, 1]. Moreover, we obtain some direct and local approximation properties of new operators. We also show that our operators preserve monotonicity properties. Furthermore, we illustrate the approximation results of our operators graphically and numerically.
dc.identifier.doi10.1515/dema-2025-0126
dc.identifier.issn0420-1213
dc.identifier.issn2391-4661
dc.identifier.issue1
dc.identifier.scopus2-s2.0-105008573562
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1515/dema-2025-0126
dc.identifier.urihttps://hdl.handle.net/11129/10480
dc.identifier.volume58
dc.identifier.wosWOS:001503156600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherDe Gruyter Poland Sp Z O O
dc.relation.ispartofDemonstratio Mathematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectBernstein operators
dc.subjectBernstein-Kantorovich operators
dc.subjectpolynomial approximation
dc.subjectrate of convergence
dc.subjectmodulus of continuity
dc.subjectshape-preserving properties
dc.subjectuniform convergence
dc.title(?, ?)-Bernstein-Kantorovich operators
dc.typeArticle

Files