A measure of the deviation from there being fibrations between a pair of compact manifolds

dc.contributor.authorPintea, Cornel
dc.date.accessioned2026-02-06T18:37:45Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper we first study the topology of certain manifold complements. The obtained results are then used to show that the phi-category (cf. Lusternik-Schnirelmann category) of some pairs of manifolds is infinite. Finally, in the last section the equivariant case is considered, examples of equivariant mappings with infinitely many critical orbits being provided. (C) 2006 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.difgeo.2006.02.002
dc.identifier.endpage587
dc.identifier.issn0926-2245
dc.identifier.issue6
dc.identifier.scopus2-s2.0-33751309616
dc.identifier.scopusqualityQ3
dc.identifier.startpage579
dc.identifier.urihttps://doi.org/10.1016/j.difgeo.2006.02.002
dc.identifier.urihttps://hdl.handle.net/11129/12618
dc.identifier.volume24
dc.identifier.wosWOS:000243254400003
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.ispartofDifferential Geometry and Its Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectcritical points and critical orbits
dc.subjectfibrations
dc.subjectequivariant mappings
dc.titleA measure of the deviation from there being fibrations between a pair of compact manifolds
dc.typeArticle

Files