Recursive inverse algorithm: Mean-square-error analysis

dc.contributor.authorSalman, Mohammad Shukri
dc.contributor.authorKukrer, Osman
dc.contributor.authorHocanin, Aykut
dc.date.accessioned2026-02-06T18:37:46Z
dc.date.issued2017
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe recently proposed recursive inverse (RI) adaptive algorithm has shown improved performance compared to some well-known adaptive algorithms [1]. However, there has been no detailed study of its performance. In this paper, we provide an analytical treatment of the ensemble-average learning curve of the RI algorithm. A novel analytical result which describes the learning behavior of the RI algorithm is obtained. It is shown that within limits of approximation, the excess mean-square-error (MSE) of the algorithm approaches zero and the RI algorithm converges to a lower steady-state MSE than the LMS algorithm. The results show that the theoretical and experimental MSE curves of the RI algorithm are in agreement. Also, the MSE analysis of the RI algorithm in a nonstationary environment, where the optimum weight is assumed to be randomly changing about a fixed vector, is derived. (C) 2017 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.dsp.2017.04.001
dc.identifier.endpage17
dc.identifier.issn1051-2004
dc.identifier.issn1095-4333
dc.identifier.orcid0000-0002-1769-6652
dc.identifier.orcid0000-0002-3283-4400
dc.identifier.scopus2-s2.0-85018510944
dc.identifier.scopusqualityQ1
dc.identifier.startpage10
dc.identifier.urihttps://doi.org/10.1016/j.dsp.2017.04.001
dc.identifier.urihttps://hdl.handle.net/11129/12626
dc.identifier.volume66
dc.identifier.wosWOS:000402223600002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.ispartofDigital Signal Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectMean-square-error
dc.subjectExcess MSE
dc.subjectLMS algorithm
dc.subjectRLS algorithm
dc.titleRecursive inverse algorithm: Mean-square-error analysis
dc.typeArticle

Files