Recurrent neural network speech predictor based on dynamical systems approach

dc.contributor.authorVaroglu, E
dc.contributor.authorHacioglu, K
dc.date.accessioned2026-02-06T18:43:46Z
dc.date.issued2000
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractA nonlinear predictive model of speech, based on the method of time delay reconstruction, is presented and approximated using a fully connected recurrent neural network (RNN) followed by a linear combiner. This novel combination of the well established approaches for speech analysis and synthesis is compared with traditional techniques within a unified framework to illustrate the advantages of using an RNN. Extensive simulations are carried out to justify the expectations. Specifically, the network's robustness to the selection of reconstruction parameters, the embedding time delay and dimension, is intuitively discussed and experimentally verified, In all cases, the proposed network was found to be a good solution for both prediction and synthesis.
dc.identifier.doi10.1049/ip-vis:20000192
dc.identifier.endpage156
dc.identifier.issn1350-245X
dc.identifier.issue2
dc.identifier.scopus2-s2.0-20444497697
dc.identifier.scopusqualityN/A
dc.identifier.startpage149
dc.identifier.urihttps://doi.org/10.1049/ip-vis:20000192
dc.identifier.urihttps://hdl.handle.net/11129/13767
dc.identifier.volume147
dc.identifier.wosWOS:000087417400009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInst Engineering Technology-Iet
dc.relation.ispartofIee Proceedings-Vision Image and Signal Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectStrange Attractors
dc.titleRecurrent neural network speech predictor based on dynamical systems approach
dc.typeArticle

Files