On Fractional-and bi-calculi

dc.contributor.authorDarweesh, Amer H.
dc.contributor.authorMaghrabi, Abdelaziz M.D.
dc.date.accessioned2026-02-06T17:59:06Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper we introduce fractional-and bi-calculi using Riemann-Liouville approach and Caputo approach as well. An effort is put into explaining the basic principles of these calculi since they are not as common as classical calculus. This was also done for tanh-, bi-Tanh-multiplicative, and bigeometric calculi and in the general case as well. Generalizations are also investigated where the homeomorphisms , n are arbitrary. © 2023 World Scientific and Engineering Academy and Society. All Rights Reserved.
dc.identifier.doi10.37394/23202.2023.22.10
dc.identifier.endpage100
dc.identifier.issn1109-2777
dc.identifier.scopus2-s2.0-85152656806
dc.identifier.scopusqualityQ4
dc.identifier.startpage87
dc.identifier.urihttps://doi.org/10.37394/23202.2023.22.10
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7908
dc.identifier.volume22
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific and Engineering Academy and Society
dc.relation.ispartofWSEAS Transactions on Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_Scopus_20260204
dc.subjectDerivative
dc.subjectfractional derivative
dc.subjecthomeomorphism.
dc.subjectintegral
dc.subjectnon-Newtonian calculus
dc.titleOn Fractional-and bi-calculi
dc.typeArticle

Files