Genuine q-Stancu-Bernstein-Durrmeyer Operators

dc.contributor.authorSabancigil, Pembe
dc.date.accessioned2026-02-06T18:24:38Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn the present paper, we introduce the genuine q-Stancu-Bernstein-Durrmeyer operators Z(n)(q,alpha)(f;x). We calculate the moments of these operators, Z(n)(q,alpha)(tj;x) for j=0,1,2, which follows a symmetric pattern. We also calculate the second order central moment Z(n)(q,alpha)((t-x)2;x). We give a Korovkin-type theorem; we estimate the rate of convergence for continuous functions. Furthermore, we prove a local approximation theorem in terms of second modulus of continuity; we obtain a local direct estimate for the genuine q-Stancu-Bernstein-Durrmeyer operators in terms of Lipschitz-type maximal function of order beta and we prove a direct global approximation theorem by using the Ditzian-Totik modulus of second order.
dc.identifier.doi10.3390/sym15020437
dc.identifier.issn2073-8994
dc.identifier.issue2
dc.identifier.orcid0000-0001-9838-9445
dc.identifier.scopus2-s2.0-85148849851
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/sym15020437
dc.identifier.urihttps://hdl.handle.net/11129/10277
dc.identifier.volume15
dc.identifier.wosWOS:000941215700001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofSymmetry-Basel
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectq-Stancu operators
dc.subjectq-Durrmeyer operators
dc.subjectq-Bernstein polynomials
dc.subjectmodulus of continuity
dc.subjectlocal and global approximation
dc.titleGenuine q-Stancu-Bernstein-Durrmeyer Operators
dc.typeArticle

Files