Fractional calculus containing certain bivariate Mittag-Leffler kernel with respect to function
| dc.contributor.author | Ozarslan, Mehmet Ali | |
| dc.contributor.author | Kurt, Cemaliye | |
| dc.date.accessioned | 2026-02-06T18:26:28Z | |
| dc.date.issued | 2025 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | In the present study, we introduce a general integral operator containing bivariate Mittag-Leffler (M-L) kernel with respect to a function tau ( z ) \tau \left(z) . This general family includes the usual, Hadamard, Katugampola, Erd & eacute;lyi-Kober, and Tempered versions for specific choices of the function tau ( z ) \tau \left(z) . We investigate the main properties of the general family by using series representation and conjugation relation. | |
| dc.identifier.doi | 10.1515/dema-2025-0156 | |
| dc.identifier.issn | 0420-1213 | |
| dc.identifier.issn | 2391-4661 | |
| dc.identifier.issue | 1 | |
| dc.identifier.scopus | 2-s2.0-105020908076 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1515/dema-2025-0156 | |
| dc.identifier.uri | https://hdl.handle.net/11129/10481 | |
| dc.identifier.volume | 58 | |
| dc.identifier.wos | WOS:001599458600001 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | De Gruyter Poland Sp Z O O | |
| dc.relation.ispartof | Demonstratio Mathematica | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | bivariate M-L function | |
| dc.subject | bivariate fractional calculus | |
| dc.subject | fractional calculus with respect to functions | |
| dc.subject | integral transforms | |
| dc.title | Fractional calculus containing certain bivariate Mittag-Leffler kernel with respect to function | |
| dc.type | Article |










