Uninformed and Informed Search Techniques in Artificial Intelligence

dc.contributor.advisorAliyev, Rashad
dc.contributor.authorAlgasi, Khaled A. O.
dc.date.accessioned2020-10-30T08:19:54Z
dc.date.available2020-10-30T08:19:54Z
dc.date.issued2017
dc.date.submitted2017
dc.departmentEastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematicsen_US
dc.descriptionMaster of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2017. Supervisor: Prof. Dr. Rashad Aliyev.en_US
dc.description.abstractIn this master thesis the search techniques in Artificial Intelligence are analyzed. The search techniques are grouped into two main categories which are uninformed search techniques and informed search techniques. Such uninformed search techniques as breadth-first search, depth-first search, depth-limited search, iterative deepening search, uniform cost search, and bidirectional search are considered. The best-first search, greedy best-first search, A* search and hill climbing techniques as paradigms of informed search techniques are studied. The completeness, optimality, time complexity, and space complexity properties of all above mentioned search techniques are discussed. The Dijkstra’s algorithm is used to find the shortest paths from the initial node to all other nodes in a weighted digraph.en_US
dc.description.abstractÖZ: Bu master tezinde yapay zekanın arama yöntemleri incelenir. Yapay zekada arama yöntemleri sezgisel olmayan ve sezgisel arama yöntemleri olarak iki esas kategoriye ayrılır. Önce genişliğine arama, önce derinliğine arama, derinlik sınırlandırmalı arama, yineli derinleştirmeli arama, düzenli maliyet arama ve çift yönlü arama yöntemleri sezgisel olmayan yöntemler olarak dikkate alınır. En iyi öncelikli arama, açgözlü en iyi öncelikli arama, A* arama ve tepe tırmanma yöntemleri sezgisel arama yöntemlerinin paradigmaları olarak incelenir. Yukarıda adı geçen tüm arama yöntemlerinin tamlık, optimallik, zaman karmaşıklığı ve bellek karmaşıklığı özellikleri tartışılır. Dijkstra algoritması kullanarak ağırlıklı yönlü grafikte başlangıç düğümünden diğer dügümlere gidilebilecek en kısa yol bulunur.en_US
dc.identifier.citationAlgasi, Khaled A. O.. (2017). Uninformed and Informed Search Techniques in Artificial Intelligence. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/4714
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematicsen_US
dc.subjectApplied Mathematics and Computer Scienceen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectBreadth-first searchen_US
dc.subjectDepth-first searchen_US
dc.subjectDepth-limited searchen_US
dc.subjectIterative deepening searchen_US
dc.subjectUniform cost searchen_US
dc.subjectBidirectional searchen_US
dc.subjectBest-first searchen_US
dc.subjectGreedy best-first searchen_US
dc.subjectA* searchen_US
dc.subjectHill climbing searchen_US
dc.subjectDijkstra’s algorithmen_US
dc.titleUninformed and Informed Search Techniques in Artificial Intelligenceen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
algasikhaled.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: