Statistical flexural toughness modeling of ultra high performance concrete using response surface method
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Techno-Press
Access Rights
info:eu-repo/semantics/closedAccess
Abstract
This paper aims to model the effects of five different variables which includes: cement content (C), the steel fiber amount (F), the silica fume amount (SF), the superplasticizer (SP), the silica fume amount (SF), and the water to cementitious ratio (w/c) on 28 days flexural toughness of Ultra High Performance Concrete (UHPC) as well as, a study on the variable interactions and correlations by using analyze of variance (ANOVA) and response surface methodology (RSM). The variables were compared by fine aggregate mass. The model will be valid for the mixes with 0.18 to 0.32 w/c ratio, 4 to 8 percent steel fiber, 7 to 13 percent cement, 15 to 30 percent silica fume, and 4 to 8 percent superplasticizer by fine aggregate mass.
Description
Keywords
ultra high performance concrete, response surface method, flexural toughness, central composite methodology
Journal or Series
Computers and Concrete
WoS Q Value
Scopus Q Value
Volume
17
Issue
4










