New variants of the criss-cross method for linearly constrained convex quadratic programming

dc.contributor.authorAkkeles, AA
dc.contributor.authorBalogh, L
dc.contributor.authorIllés, T
dc.date.accessioned2026-02-06T18:29:01Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Workshop on Smooth and Nonsmooth Optimization -- JUL 12-13, 2001 -- Rotterdam, NETHERLANDS
dc.description.abstractIn this paper, S. Zhang's [Eur. J. Oper. Res. 116 (1999) 607] new and more flexible criss-cross type algorithms (with LIFO and most-often-selected-variable pivot rules) are generalized for linearly constrained convex primal-dual quadratic programming problems. These criss-cross type algorithms are different from the one described in Klafszky and Terlaky [Math. Oper. und Stat. Ser. Optim. 24 (1992) 127]. Even though the finiteness proof of these new criss-cross type algorithms is similar to the original one for the algorithm of Klafszky and Terlaky (in the sense that both these proofs are based on the orthogonality theorem), more cases have to be considered clue to the flexibility of pivot (LIFO/most-often-selected-variable) rules, which requires a deeper and more careful analysis. When the primal-dual problem is a linear programming problem (no quadratic terms in the objective function), the structure of the corresponding linear complementarity problem is simpler (i.e. the matrix of the problem is skew-symmetric). For such problem pairs, our proof of finiteness simplifies to the proof of Illes and Meszdros' [Yugoslav J. Oper. Res. 11 (2001) 17] and provides a new finiteness proof for S. Zhang's criss-cross type algorithms. (C) 2003 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.ejor.2003.08.008
dc.identifier.endpage86
dc.identifier.issn0377-2217
dc.identifier.issn1872-6860
dc.identifier.issue1
dc.identifier.orcid0000-0002-8789-6211
dc.identifier.scopus2-s2.0-1842530954
dc.identifier.scopusqualityQ1
dc.identifier.startpage74
dc.identifier.urihttps://doi.org/10.1016/j.ejor.2003.08.008
dc.identifier.urihttps://hdl.handle.net/11129/11241
dc.identifier.volume157
dc.identifier.wosWOS:000220945500009
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofEuropean Journal of Operational Research
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectlinearly constrained convex quadratic optimization
dc.subjectlinear complementarity problems
dc.subjectcriss-cross type algorithms
dc.titleNew variants of the criss-cross method for linearly constrained convex quadratic programming
dc.typeConference Object

Files