Sensitivity analysis of partitioning-based face recognition algorithms on occlusions

dc.contributor.authorToygar, Oensen
dc.date.accessioned2026-02-06T18:28:25Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description6th WSEAS International Conference on Applications of Electrical Engineering -- MAY 27-29, 2007 -- Istanbul, TURKEY
dc.description.abstractHolistic Principal Component Analysis (PCA) and holistic Independent Component Analysis (ICA) methods require long training times and large storage spaces for the recognition of facial images. These drawbacks can be avoided by using partitioning-based methods, namely partitioned PCA (pPCA) and partitioned ICA (pICA), which yield similar performance for pPCA and improved performance for pICA method compared to the holistic counterparts of these methods for the recognition of frontal facial images. This paper demonstrates the sensitivity analysis of pPCA and pICA methods on several types and sizes of occlusions for the recognition of facial images with similar facial expressions. The recognition rates for pPCA and pICA over occlusions are contrary to the recognition rates of these methods on occlusion-free facial images with different facial expressions.
dc.description.sponsorshipWSEAS
dc.identifier.endpage+
dc.identifier.isbn978-960-8457-71-3
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.scopusqualityN/A
dc.identifier.startpage21
dc.identifier.urihttps://hdl.handle.net/11129/10924
dc.identifier.wosWOS:000250383700005
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherWorld Scientific And Engineering Acad And Soc
dc.relation.ispartofAee '07: Proceedings of the 6Th Wseas International Conference on Applications of Electrical Engineering
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectface recognition
dc.subjectPCA
dc.subjectICA
dc.subjectmultiple classier systems
dc.subjectclassifier combination
dc.subjectface occlusion
dc.titleSensitivity analysis of partitioning-based face recognition algorithms on occlusions
dc.typeConference Object

Files