Quantum-corrected thermodynamics and plasma lensing in non-minimally coupled symmetric teleparallel black holes

dc.contributor.authorSucu, Erdem
dc.contributor.authorSakalli, Izzet
dc.contributor.authorSert, Ozcan
dc.contributor.authorSucu, Yusuf
dc.date.accessioned2026-02-06T18:37:44Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe investigate the thermodynamic and optical signatures of electrically charged black holes (BHs) in symmetric teleparallel gravity (STPG) with non-minimal electromagnetic coupling, incorporating quantum corrections and plasma dispersion effects. The BH solution, characterized by a coupling parameter k, generalizes the Reissner-Nordstr & ouml;m spacetime through power-law modifications to electromagnetic terms in the metric function. We implement exponential corrections to the Bekenstein-Hawking entropy of the form S = S0 + eS0 and derive quantum-corrected expressions for fundamental thermodynamic quantities including internal energy, Helmholtz and Gibbs free energies, pressure, enthalpy, and heat capacity. Our analysis reveals rich phase transition structures with second-order transitions occurring at critical horizon radii for specific coupling values, demonstrating enhanced thermodynamic instability under strong non-minimal coupling effects. The quantum-corrected Joule-Thomson expansion analysis identifies distinct cooling and heating regimes separated by inversion points that shift systematically with the coupling parameter k. We analyze the efficiency of heat engines operating in Carnot cycles, finding that electromagnetic charge enhances thermodynamic performance with efficiency values approaching 99% for optimal configurations in this geometry. Using the Gauss-Bonnet theorem, we derive analytical expressions for gravitational deflection angles in both vacuum and plasma environments, revealing how non-minimal coupling and plasma dispersion create frequency-dependent lensing signatures that differ substantially from general relativity predictions.
dc.description.sponsorshipCOST Actions [CA22113, CA21106, CA23130]
dc.description.sponsorshipThe authors thank the editor and anonymous referee for their valuable comments and suggestions that significantly improved the quality of this manuscript. & Idot;. S. and E.S. thank EMU, TUB & Idot;TAK, ANKOS, and SCOAP3 for academic support and acknowledge the networking support of COST Actions CA22113, CA21106, and CA23130.
dc.identifier.doi10.1016/j.dark.2025.102063
dc.identifier.issn2212-6864
dc.identifier.orcid0009-0000-3619-1492
dc.identifier.orcid0000-0001-7827-9476
dc.identifier.scopus2-s2.0-105014534254
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.dark.2025.102063
dc.identifier.urihttps://hdl.handle.net/11129/12601
dc.identifier.volume50
dc.identifier.wosWOS:001564119200001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofPhysics of the Dark Universe
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectBlack hole thermodynamics
dc.subjectSymmetric teleparallel gravity
dc.subjectQuantum corrections
dc.subjectJoule-Thomson expansion
dc.subjectGravitational lensing
dc.subjectEfficiency
dc.subjectHeat engine
dc.titleQuantum-corrected thermodynamics and plasma lensing in non-minimally coupled symmetric teleparallel black holes
dc.typeArticle

Files