A Hybrid Handcrafted and Deep Transfer Learning-Based Framework for COVID-19 Detection Using Voice Analysis

dc.contributor.authorMazo, Reynold Navarro
dc.contributor.authorContreras, Rodrigo Colnago
dc.contributor.authorViana, Monique Simplicio
dc.contributor.authorToygar, Önsen
dc.contributor.authorGuido, Rodrigo Capobianco
dc.date.accessioned2026-02-06T17:53:52Z
dc.date.issued2026
dc.departmentDoğu Akdeniz Üniversitesi
dc.description24th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2025 -- 2025-06-22 through 2025-06-26 -- Zakopane -- 342659
dc.description.abstractThe COVID-19 pandemic has underscored the need for accessible and efficient screening methods. This study proposes a hybrid handcrafted and deep transfer learning-based framework for COVID-19 detection using voice analysis. The approach combines handcrafted non-cepstral acoustic features, such as jitter, shimmer, and fundamental frequency, with high-dimensional embeddings extracted from a pre-trained deep learning voice-to-vector model. This fusion enables a comprehensive feature representation, capturing both handcrafted signal-based attributes and deep spectral representations. Various supervised classifiers, including Random Forest, CatBoost, and XGBoost, are trained and optimized using data balancing strategies and hyperparameter tuning techniques. Experimental results demonstrate that the proposed hybrid framework effectively differentiates between COVID-19 positive and negative individuals, achieving competitive performance compared to existing studies. These findings reinforce the potential of voice-based COVID-19 detection as a scalable, non-invasive, and cost-effective screening tool. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP, (2013/07375-0); Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP
dc.description.sponsorshipUniversity of Social Sciences in Lodz, Poland
dc.identifier.doi10.1007/978-3-032-03711-4_22
dc.identifier.endpage278
dc.identifier.isbn9789819698936
dc.identifier.isbn9789819698042
dc.identifier.isbn9789819698110
dc.identifier.isbn9789819698905
dc.identifier.isbn9783032004949
dc.identifier.isbn9789819512324
dc.identifier.isbn9783032026019
dc.identifier.isbn9783032008909
dc.identifier.isbn9783031915802
dc.identifier.isbn9789819698141
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-105022176603
dc.identifier.scopusqualityQ3
dc.identifier.startpage266
dc.identifier.urihttps://doi.org/10.1007/978-3-032-03711-4_22
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7128
dc.identifier.volume15950 LNCS
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofLecture Notes in Computer Science
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectClassification (of information)
dc.subjectDeep learning
dc.subjectScreening
dc.subjectAcoustic features
dc.subjectCepstral
dc.subjectEmbeddings
dc.subjectFundamental frequencies
dc.subjectHigh-dimensional
dc.subjectHigher-dimensional
dc.subjectScreening methods
dc.subjectTransfer learning
dc.subjectVector-modeling
dc.subjectVoice analysis
dc.subjectCost effectiveness
dc.titleA Hybrid Handcrafted and Deep Transfer Learning-Based Framework for COVID-19 Detection Using Voice Analysis
dc.typeConference Object

Files