Fuzzy system modeling with the genetic and differential evolutionary optimization

dc.contributor.authorBodur, Mehmet
dc.contributor.authorAcan, Adnan
dc.contributor.authorAkyol, Talip
dc.date.accessioned2026-02-06T18:28:57Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Conference on Computational Intelligence for Modelling, Control and Automation/International Conference on Intelligent Agents Web Technologies and International Commerce -- NOV 28-30, 2005 -- Vienna, AUSTRIA
dc.description.abstractThis paper compares the performance of two provably successful evolutionary optimization tools in the optimization of a Fuzzy-Rule-Base (FRB) for the three well known fuzzy modeling inference methods: Zadeh's (center-of-gravity), Kosko's (Standard-Additive-Model), and Takagi-Sugeno's (local linear) Model. In the Fuzzy System Modeling of an uncertain data, FRB keeps the model information within the fuzzy rules. The initial fuzzy-rule-base for the evolutionary optimization algorithms is extracted using Bezdek's FCM. In the optimization, the normalized root mean square error of the training data is minimized for the fine-tuning of the FRB parameters for each of the inference models. The performance evaluation with the test cases indicates that differential evolutionary optimization achieves better results in terms of convergence speed and yields better parameters than the elitist genetic optimization.
dc.description.sponsorshipIEEE Computat Intelligence Soc,European Soc Fuzzy Log & Technol,European Neural Network Soc,Int Assoc Fuzzy Set Management & Econ,Japan Soc Fuzzy Theory & Intelligent Informat,Taiwan Fuzzy Syst Assoc,World Wide Web Business Intelligence,Hungarian Fuzzy Assoc,Univ Canberra
dc.identifier.endpage+
dc.identifier.isbn0-7695-2504-0
dc.identifier.orcid0000-0001-6645-6797
dc.identifier.scopus2-s2.0-33847202253
dc.identifier.scopusqualityN/A
dc.identifier.startpage432
dc.identifier.urihttps://hdl.handle.net/11129/11184
dc.identifier.wosWOS:000239912700071
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofInternational Conference on Computational Intelligence For Modelling, Control & Automation Jointly With International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 1, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.titleFuzzy system modeling with the genetic and differential evolutionary optimization
dc.typeConference Object

Files