An operational calculus formulation of fractional calculus with general analytic kernels

dc.contributor.authorRani, Noosheza
dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:21:36Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractFractional calculus with analytic kernels provides a general setting of integral and derivative operators that can be connected to Riemann-Liouville fractional calculus via convergent infinite series. We interpret these operators from an algebraic viewpoint, using Mikusinski's operational calculus, and utilise this algebraic formalism to solve some fractional differential equations.
dc.identifier.doi10.3934/era.2022216
dc.identifier.endpage4255
dc.identifier.issn2688-1594
dc.identifier.issue12
dc.identifier.scopus2-s2.0-85139311389
dc.identifier.scopusqualityQ2
dc.identifier.startpage4238
dc.identifier.urihttps://doi.org/10.3934/era.2022216
dc.identifier.urihttps://hdl.handle.net/11129/9382
dc.identifier.volume30
dc.identifier.wosWOS:000863686700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofElectronic Research Archive
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectfractional integrals
dc.subjectfractional derivatives
dc.subjectoperational calculus
dc.subjectfractional di ff erential
dc.subjectequations
dc.subjectMikusi?ski?s operational calculus
dc.titleAn operational calculus formulation of fractional calculus with general analytic kernels
dc.typeArticle

Files