Picard Approximation of a Singular Backward Stochastic Nonlinear Volterra Integral Equation

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Basel Ag

Access Rights

info:eu-repo/semantics/openAccess

Abstract

In this paper we prove that Picard iterations of BSDEs with globally Lipschitz continuous nonlinearities converge exponentially fast to the solution. Our main result in this paper is to establish a fundamental lemma to prove the global existence and uniqueness of an adapted solution to a singular backward stochastic nonlinear Volterra integral equation (for short, singular BSVIE) of order alpha is an element of ( 1 2 , 1 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (\frac{1}{2},1)$$\end{document} under a weaker condition than Lipschitz one in Hilbert space.

Description

Keywords

Singular backward stochastic equations, Backward stochastic nonlinear Volterra integral equation, Existence and uniqueness, Picard iteration, Adapted process, Carath & eacute;odory conditions

Journal or Series

Qualitative Theory of Dynamical Systems

WoS Q Value

Scopus Q Value

Volume

23

Issue

4

Citation

Endorsement

Review

Supplemented By

Referenced By