Existence Results for Boundary Value Problems of Fractional Type Differential Equations

dc.contributor.advisorMahmudov, Nazım (Supervisor)
dc.contributor.authorEmin, Sedef Sultan
dc.date.accessioned2024-08-08T09:57:16Z
dc.date.available2024-08-08T09:57:16Z
dc.date.issued2019-06
dc.date.submitted2019-06
dc.departmentEastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematicsen_US
dc.descriptionDoctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2019. Supervisor: Prof. Dr. Nazım Mahmudoven_US
dc.description.abstractThe theme of this thesis is based on the solutions of fractional differential equations. We investigate the existence and uniqueness results of the fractional differential equations with boundary value conditions. Mostly, in this thesis, one of the fractional differential equation which is the Caputo type fractional differential equation is used and also, for the boundary conditions, different types of boundary conditions are used such as nonlocal Katugampola fractional integral conditions and nonlinear boundary conditions. The existence and uniqueness results of solutions are discussed by using standard fixed point theorems such as Banach fixed point theorem, Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, Perov's fixed point theorem is investigated for multivariable operators. Moreover, Ulam Hyers stable is studied. In addition, for the nonlinear boundary conditions of Caputo type fractional differential equation, parametrization technique is used. So, numerical analytic scheme is established for finding the successive approximations. Theories which are studied in this thesis are illustrated with examples.en_US
dc.description.abstractÖZ: Bu tezin konusu kesirli diferansiyel denklemlerin çözümüne dayanmaktadır. Tanımlanmış olan kesirli diferensiyel denklemlerin varlığı ve tek çözüm olma sonuçları araştırıldı. Bu tezde, çoğunlukla, kesirli diferansiyel denklemlerden biri olan Caputo tipi kesirli diferansiyel denklem kullanılmıştır. Ayrıca, sınır koşulları için, yerel olmayan Katugampola kesirli integral koşulları ve doğrusal olmayan sınır koşulları gibi farklı sınır koşulları uygulanmıştır. Çözümlerin varlığı ve tek olma sonuçları, Banach sabit nokta teoremi, Leray-Schauder'ın doğrusal olmayan alternatifi ve Krasnoselskii'nin sabit nokta teoremleri kullanılarak tartışılmıştır. Ayrıca, Perov'un sabit nokta teoremi çok değişkenli operatörler için incelenmiştir. Ek olarak, Caputo tipi kesirli diferensiyel denklemin doğrusal olmayan sınır koşulları için parametreleme tekniği kullanılmıştır. Böylece, ardışık yaklaşılanları bulmak için sayısal analitik şema kullanılmıştır. Ayrıca, bu tezde incelenen teoriler örneklerle gösterilmiştir.en_US
dc.identifier.citationEmin, Sedef Sultan. (2019). Existence Results for Boundary Value Problems of Fractional Type Differential Equations. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/6040
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematics Departmenten_US
dc.subjectBoundary Value Problems--Differential Equationsen_US
dc.subjectFractional differential equations; Katugampola fractional integral; Caputo fractional derivative; Riemann-Liouville fractional integral; fixed point theorems; parametrization technique; successive approximations; multivariable operationsen_US
dc.titleExistence Results for Boundary Value Problems of Fractional Type Differential Equationsen_US
dc.typeDoctoral Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
EminSedef.pdf
Size:
860.76 KB
Format:
Adobe Portable Document Format
Description:
Thesis, Doctoral

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: