Some Remarks on Extended Hypergeometric, Extended Confluent Hypergeometric and Extended Appell's Functions

dc.contributor.authorOzarslan, Mehmet Ali
dc.date.accessioned2026-02-06T18:22:27Z
dc.date.issued2012
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractRecently, Chaudhry et al. have introduced the extended hypergeometric functions (EHF) and extended confluent hypergeometric functions (ECHF) by using the generalized beta functions [1]. In a similar way, Ozarslan et al. extended the first two Appell's hypergeometric functions. In this paper, we show that these extended functions can be represented in terms of a finite number of well known higher transcendental functions, especially as an infinite series containing hypergeometric, confluent hy-pergeometric, Whittaker's, Lagrange functions, Laguerre polynomials, and products of them.
dc.identifier.endpage1153
dc.identifier.issn1521-1398
dc.identifier.issue6
dc.identifier.scopus2-s2.0-84856692774
dc.identifier.scopusqualityN/A
dc.identifier.startpage1148
dc.identifier.urihttps://hdl.handle.net/11129/9824
dc.identifier.volume14
dc.identifier.wosWOS:000300530000017
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherEudoxus Press, Llc
dc.relation.ispartofJournal of Computational Analysis and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectExtended hypergeometric functions
dc.subjectextended confluent hypergeometric functions
dc.subjectextended Appell's hypergeometric functions
dc.subjectLaguerre polynomials
dc.subjectWhittaker's function
dc.subjectextended fractional derivative operator
dc.titleSome Remarks on Extended Hypergeometric, Extended Confluent Hypergeometric and Extended Appell's Functions
dc.typeArticle

Files