Palmprint Image Identification Using PCA, LBP and HOG Features

dc.contributor.authorHussin, Zwha Abdulhamid
dc.date.accessioned2019-10-23T11:53:05Z
dc.date.available2019-10-23T11:53:05Z
dc.date.issued2017-02
dc.departmentEastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineeringen_US
dc.descriptionMaster of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assist. Prof. Dr. Adnan Acan.en_US
dc.description.abstractBiometrics considered as the science which is playing an important role of person recognition. User identification mainly based on the physiological characteristics of an individual. Palmprint is an example of physiological characteristics of an individual which can be easily captured by using some types of sensors and cameras. The palmprint has many nature compositions which contain rich features that mainly used for distinguishing such as, wrinkles, ridges, principal lines, singular and minutiae points, these make a palmprint as one of a unique biometric and reliable for human recognition. In this work different features extraction algorithms were used such as a texture based method (LBP, HOG), and appearance based method (PCA). Also K-Cross Validation algorithm was implemented. The accuracy rates of recognition results of implemented algorithms were acquired and compared. Keywords: Biometric, Palmprint, Accuracy rates and Recognition algorithms.en_US
dc.description.abstractÖZ: Bir bilim dalı olarak Biyometri kişiyi tanımada önemli bir rol oynamaktadır. Biyometri, kişisel belirlemeler esas olarak bir bireyin fizyolojik özelliklerini esas almaktadır. Bireyin fizyolojik özelliklerine bir örnek olarak Palmprint (Avuç İçi ) bazı sensörler ve kameralar kullanılarak kolayca yakalanabilir. Palmprint’de birçok doğal özellik bileşenleri varolmakla birlikte, belirgin özellikler içeren kırışıklıklar, kabarıklar, ana hatlar ve tekil ayrıntı noktaları insan tanımlamasında eşsiz güvenilir biyometrik ölçütleri oluştururlar. Bu çalışmada farklı özellik çıkarma algoritmaları kullanılarak doku tabanlı (LBP,HOG) ve görünüşe dayalı (PCA) özelliklerin çıkarılması çalışılmıştır. Bunlarla birlikte k-çapraz doğrulama algoritması da öğrenme sürecinde uygulandı. Tanıma sonuçlarının doğruluk oranları kullanılarak uygulanmış algoritmalar karşılaştırldı. Anahtar Kelimeler: Biyometri, palmprint, doğruluk oranları ve algoritmaları tanımlama.en_US
dc.identifier.citationHussin, Zwha Abdulhamid. (2017).Palmprint Image Identification Using PCA, LBP and HOG Features . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/4188
dc.language.isoen
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer Engineeringen_US
dc.subjectBiometric identification-Computer Visisonen_US
dc.subjectBiometric Recognition-Palmprinten_US
dc.subjectComputer pattern recognitionen_US
dc.subjectImage processing - Digital techniquesen_US
dc.subjectPattern recognition systems-Biometric identificationen_US
dc.subjectBiometricen_US
dc.subjectPalmprinten_US
dc.subjectAccuracy rates and Recognition algorithmsen_US
dc.titlePalmprint Image Identification Using PCA, LBP and HOG Featuresen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hussinzwha.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: