Using Linear Regression Residual of Document Vectors in Text Categorization

dc.contributor.authorAltincay, Hakan
dc.date.accessioned2026-02-06T18:16:55Z
dc.date.issued2013
dc.departmentDoğu Akdeniz Üniversitesi
dc.description21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUS
dc.description.abstractThe use of linear regression residual for binary text categorization is studied. The main idea is to predict the given test vector using its k nearest neighbors in both positive and negative classes. The predicted vectors are the projections of the test vector onto the subspaces of different classes. The differences between the test vector and the projections are known as the residual vectors. The magnitudes of these vectors show the effectiveness of the neighbors in different classes to represent the test vector. The residuals obtained from both positive and negative classes are cancatenated with the document vectors computed using bag of words approach. Experimental results on three widely used datasets have shown that residual vectors provide improved document representation.
dc.identifier.isbn978-1-4673-5563-6
dc.identifier.isbn978-1-4673-5562-9
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-84880887457
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/11129/8728
dc.identifier.wosWOS:000325005300002
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isotr
dc.publisherIEEE
dc.relation.ispartof2013 21St Signal Processing and Communications Applications Conference (Siu)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectlinear regression
dc.subjectresidual vector
dc.subjectdocument representation
dc.subjecttext categorization
dc.titleUsing Linear Regression Residual of Document Vectors in Text Categorization
dc.typeConference Object

Files