A Statistical Analysis on the Visits to EMU Health Center by the Students

dc.contributor.advisorTut, Mehmet Ali
dc.contributor.authorEduiyovwiri, Ogheneovo Mclarry
dc.date.accessioned2016-09-30T08:33:13Z
dc.date.available2016-09-30T08:33:13Z
dc.date.issued2016-02
dc.date.submitted2016
dc.departmentEastern Mediterranean University, Faculty of Arts and Science, Department of Mathematicsen_US
dc.descriptionMaster of Science in Applied Mathematics and Computer Science. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2016. Supervisor: Assist. Prof. Dr. Mehmet Ali Tut.en_US
dc.description.abstractThere are different statistical techniques in estimating and predicting future events or outcome given a set of independent factors influencing such an event. Regression analysis is one of the modern statistical tools used for such purpose. Knowing the outcome of an event given a set of independent variable will help make proper decisions regarding the scenario. Here, regression analysis was used to predict the number of visitors visiting some key department of the Eastern Mediterranean University Health Center. This will help the school management to know the area where the health center is shorting man power and to also carry out a research or study on the reason why visitors are faced with such illness relating to the department they visit often. A solution has been detected and discussed to help in the prediction of the number of visitors visiting some key department of the school health center. A regression analysis has been carried out on the data set of the visitors who visited the health center in the past 22 months (January, 2014 to October, 2015) this involves the number of visitors in each month and the department they visited. This is done by the use of statistical software called SPSS. It is use for regression, and prediction measure especially when one is dealing with large numbers. Keywords: Estimating, Department, Health Center, Predicting, Regression Analysis, SPSS, Statistical Techniquesen_US
dc.description.abstractÖZ: Gerçek hayat olaylarında (uygulamalarında) bilinmeyen (var olmayan) parametre değerlerini kestirimini yapabilmek için istatiksel metodlardan Regresyon analizi önemli bir rol oynamaktadır.Bağımsız parametre değeri kullanılarak bilinmeyen değer bulunan regresyon fonksiyonu yardımıyla bulunabilmektedir. Yapılan bu çalışmada DAÜ Sağlık merkezine başvuran hastaların hangi ünite(branş) üzerinde yoğunlaştıkları Eregrasyon analizi yardımıyla modellenerek gelecek aylarda beklenen ziyaretçi sayıları kestirilmesiyle çalışılmıştır. Yapılan kestirimlerde üniversitesinin yoğunluk yaşayacağı söylenebilir. Anahtar kelimeler : Bağımsız değişken , Bağımlı değişken , Kestirme, Öngörme ,regresyon analizi ,SPSSen_US
dc.identifier.citationEduiyovwiri, Ogheneovo Mclarry. (2016). A Statistical Analysis on the Visits to EMU Health Center by the Students. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/2926
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematicsen_US
dc.subjectApplied Mathematics and Computer Scienceen_US
dc.subjectStatisticsen_US
dc.subjectMathematical statistics - Data processingen_US
dc.subjectEstimatingen_US
dc.subjectDepartmenten_US
dc.subjectHealth Centeren_US
dc.subjectPredictingen_US
dc.subjectRegression Analysisen_US
dc.subjectSPSSen_US
dc.subjectStatistical Techniquesen_US
dc.titleA Statistical Analysis on the Visits to EMU Health Center by the Studentsen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
eduiyovwiriogheneovo.pdf
Size:
930.42 KB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: