Wrist Vein Recognition by Fusion of Multiple Handcrafted Methods

dc.contributor.authorBabalola, Felix Olanrewaju
dc.contributor.authorToygar, Önsen
dc.contributor.authorBitirim, Yıltan
dc.date.accessioned2026-02-06T17:54:36Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2021 -- 2021-06-11 through 2021-06-13 -- Ankara -- 171163
dc.description.abstractA wrist vein recognition system is proposed in this paper. The system combines three texture-based feature descriptors, namely, multiple filters of Binarized Statistical Image Features (M-BSIF), 2D Gabor filter, and Histogram of Gradient orientation by Decision-Level Fusion. The method was tested on two publicly available datasets obtained from FYO and PUT databases. The proposed method outperforms the individual descriptors and achieves 95.63% and 93.92% accuracies on FYO and PUT databases, respectively. © 2021 IEEE.
dc.identifier.doi10.1109/HORA52670.2021.9461367
dc.identifier.isbn9781665440585
dc.identifier.scopus2-s2.0-85114520772
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/HORA52670.2021.9461367
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7485
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectBiometrics
dc.subjectDecision-Level Fusion
dc.subjectWrist vein
dc.titleWrist Vein Recognition by Fusion of Multiple Handcrafted Methods
dc.typeConference Object

Files