ZT-ADIPML: Unconditionally stable PML algorithm for FDTD simulations

dc.contributor.authorRamadan, O
dc.date.accessioned2026-02-06T18:33:42Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractUnconditionally stable formulations of the perfectly matched layer (PML) are presented for truncating linear dispersive finite-difference time-domain (FDTD) grids. In the proposed formulations, the L-transform theory is employed in the alternating-direction implicit FDTD (ADI-FDTD) algorithm to obtain update equations for the field components in dispersive media. The validity of the proposed formulations is shown through a numerical example carried out in 1D linear Lorentz dispersive FDTD domain. (C) 2005 Wiley Periodicals. Inc.
dc.identifier.doi10.1002/mop.21360
dc.identifier.endpage396
dc.identifier.issn0895-2477
dc.identifier.issue2
dc.identifier.scopus2-s2.0-33645682085
dc.identifier.scopusqualityQ3
dc.identifier.startpage393
dc.identifier.urihttps://doi.org/10.1002/mop.21360
dc.identifier.urihttps://hdl.handle.net/11129/11457
dc.identifier.volume48
dc.identifier.wosWOS:000234765000055
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherJohn Wiley & Sons Inc
dc.relation.ispartofMicrowave and Optical Technology Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectperfectly matched lover (PML)
dc.subjectalternating direction implicit (ADI)
dc.subjectfinite-difference time-domain (FDTD)
dc.subjectL-transform
dc.titleZT-ADIPML: Unconditionally stable PML algorithm for FDTD simulations
dc.typeArticle

Files