Tomato Disease Recognition Using a Compact Convolutional Neural Network

dc.contributor.authorOzbilge, Emre
dc.contributor.authorUlukok, Mehtap Kose
dc.contributor.authorToygar, Onsen
dc.contributor.authorOzbilge, Ebru
dc.date.accessioned2026-02-06T18:49:39Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe detection of diseases in tomatoes in advance and early intervention and treatment increase the production amount, efficiency, and quality, which will satisfy the consumer with a more affordable shelf price. Thus, the efforts of farmers waiting for harvests throughout the season are not wasted. In this study, a compact convolutional neural network (CNN) is proposed for a disease identification task in which the network comprises only six layers, which is why it is computationally inexpensive in terms of the parameters employed in the network. This network was trained using PlantVillage's tomato crop dataset, which consisted of 10 classes (nine diseases and one healthy). The proposed network was first compared with the well-known pre-trained ImageNet deep networks using a transfer learning approach. The results show that the proposed network performs better than pre-trained knowledge transferred deep network models, and that there is no need to constitute very large, complicated network architectures to achieve superior tomato disease identification performance. Furthermore, data augmentation techniques are employed during network training to improve the performance of the proposed network. The proposed network achieved an accuracy of the F-1 score, Matthews correlation coefficient, true positive rate, and true negative rate of 99.70%, 98.49%, 98.31%, 98.49%, and 99.81%, respectively, using 9,077 unseen test images. Our results are better than or similar to those of state-of-the-art deep neural network approaches that use the PlantVillage database and the proposed method employs the cheapest architecture.
dc.identifier.doi10.1109/ACCESS.2022.3192428
dc.identifier.endpage77224
dc.identifier.issn2169-3536
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.orcid0000-0002-2295-752X
dc.identifier.scopus2-s2.0-85135242443
dc.identifier.scopusqualityQ1
dc.identifier.startpage77213
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2022.3192428
dc.identifier.urihttps://hdl.handle.net/11129/14979
dc.identifier.volume10
dc.identifier.wosWOS:000832958600001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Access
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectTomato disease classification
dc.subjectdeep learning
dc.subjectcomputer vision
dc.subjecttransfer learning
dc.subjectdata augmentation
dc.titleTomato Disease Recognition Using a Compact Convolutional Neural Network
dc.typeArticle

Files