Plurality voting-based multiple classifier systems: Statistically independent with respect to dependent classifier sets

dc.contributor.authorDemirekler, Mübeccel
dc.contributor.authorAltnçay, Hakan
dc.date.accessioned2026-02-06T17:54:12Z
dc.date.issued2002
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe simultaneous use of multiple classifiers has been shown to provide performance improvement in classification problems. The selection of an optimal set of classifiers is an important part of multiple classifier systems and the independence of classifier outputs is generally considered to be an advantage for obtaining better multiple classifier systems. In this paper, the need for the classifier independence is interrogated from classification performance point of view. The performance achieved with the use of classifiers having independent joint distributions is compared to some other classifiers which are defined to have best and worst joint distributions. These distributions are obtained by formulating the combination operation as an optimization problem. The analysis revealed several important observations about classifier selection which are then used to analyze the problem of selecting an additional classifier to be used with the available multiple classifier system. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
dc.identifier.doi10.1016/S0031-3203(01)00227-8
dc.identifier.endpage2379
dc.identifier.isbn9781597492720
dc.identifier.isbn9780123695314
dc.identifier.issn0031-3203
dc.identifier.issue11
dc.identifier.scopus2-s2.0-0036833267
dc.identifier.scopusqualityQ1
dc.identifier.startpage2365
dc.identifier.urihttps://doi.org/10.1016/S0031-3203(01)00227-8
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7273
dc.identifier.volume35
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofPattern Recognition
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_Scopus_20260204
dc.subjectAdding new classifiers
dc.subjectBayesian formalism
dc.subjectBest distributions
dc.subjectClassifier selection
dc.subjectIndependent distributions
dc.subjectMultiple classifier systems
dc.subjectPlurality voting
dc.subjectStatistical classifier combination
dc.subjectStatistical pattern recognition
dc.subjectWorst distributions
dc.titlePlurality voting-based multiple classifier systems: Statistically independent with respect to dependent classifier sets
dc.typeArticle

Files