Comparison of Return Rate Efficiencies of Forecasting Methods in Stock Market Investment

dc.contributor.advisorBodur, Mehmet
dc.contributor.authorMeina, Um_alkher Saaed
dc.date.accessioned2019-10-11T06:32:24Z
dc.date.available2019-10-11T06:32:24Z
dc.date.issued2017-02
dc.date.submitted2017
dc.departmentEastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineeringen_US
dc.descriptionMaster of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assoc. Prof. Dr. Mehmet Bodur.en_US
dc.description.abstractPrediction of prices in stock market is an important research topic to direct investments to items with high return rates. This thesis compares available time series prediction methods for predicting of stock market prices. The available methods that have been employed for time series forecasting are support vector regression, autoregressive moving average and k-nearest neighbours. They are applied on four years of stock market data obtained from London Stock Exchange to train each model and to test the performance of the proposed techniques to select the best forecasting method. The result of the tests show that support vector regression gives less forecasting error compared to other methods of forecasting. Keywords: Stock Market Forecasting, Support Vector Regression, ARMA, k-Nearest Neighbours.en_US
dc.description.abstractÖZ: Yatırımları yüksek getiri oranlarına sahip ürünlere yönlendirmek açısından bir borsada fiyatların tahmini, önemli bir araştırma konusudur. Bu tez borsa fiyatlarının tahmini için geliştirilmiş mevcut zaman serileri tahmin yöntemlerinden destek vektör regresyonu, otoregresif hareketli ortalama ve en yakın k komşu yöntemlerini karşılaştırarak en iyi tahmin tekniğini belirlemeyi hedeflemektedir. Her bir model Londra Menkul Kıymetler Borsası'ndan elde edilen dört yıllık borsa verilerinin birinci bölümüyle eğitilmiş ve en iyi tahmin yapabilen yöntemi seçmek için verinin ikinci bölümü önerilen tekniğin performansını test etmek için kullanılmıştır. Testlerin sonucu, SVR yönteminin diğer iki tahmin yöntemine kıyasla tahminde daha az hata verdiğini göstermektedir. Anahtar Kelimeler: Borsa Tahmini, Destek Vektör Regresyon, ARMA, En Yakın k-Komşu.en_US
dc.identifier.citationMeina, Um_alkher Saaed. (2017). Comparison of Return Rate Efficiencies of Forecasting Methods in Stock Market Investment . Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/4154
dc.language.isoen
dc.publisherEastern Mediterranean University EMUen_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer Engineeringen_US
dc.subjectStock Market Forecastingen_US
dc.subjectSupport Vector Regressionen_US
dc.subjectARMAen_US
dc.subjectk-Nearest Neighboursen_US
dc.titleComparison of Return Rate Efficiencies of Forecasting Methods in Stock Market Investmenten_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
meinaum.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: