A multi-algorithm approach for optimizing collapse margin ratio in seismic design of reinforced concrete structures

dc.contributor.authorSadeghpour, Ali
dc.contributor.authorOzay, Giray
dc.date.accessioned2026-02-06T18:34:19Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis study presents a comprehensive multi-algorithm framework for optimizing the Collapse Margin Ratio (CMR) of reinforced concrete (RC) structures subjected to seismic loading, in accordance with the FEMA P695 methodology. A hybrid approach combining Artificial Neural Networks (ANNs) with Genetic Algorithms (GAs) is employed, alongside standalone optimization techniques including Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Bayesian Optimization (BO), to improve key seismic performance parameters. A dataset of 114 RC archetype structures is analyzed through more than 5,000 Incremental Dynamic Analyses (IDA) using far-field ground motion records. Surrogate models and metaheuristic algorithms are used to efficiently identify optimal values for input parameters such as fundamental period, yield and ultimate displacements, overstrength factor, and spectral acceleration. The results demonstrate that ANNs and PSO deliver the most robust performance, achieving a maximum CMR of 5.99. Sensitivity analysis further underscores the dominant influence of the fundamental period and overstrength factor. The study also incorporates uncertainty quantification and outlier detection to enhance the reliability of the optimization process. This data-driven methodology not only improves seismic resilience and cost-efficiency in structural design but also advances the integration of computational intelligence into performance-based earthquake engineering.
dc.identifier.doi10.1007/s10518-025-02234-6
dc.identifier.endpage4830
dc.identifier.issn1570-761X
dc.identifier.issn1573-1456
dc.identifier.issue11
dc.identifier.orcid0000-0002-9471-5247
dc.identifier.scopus2-s2.0-105011367324
dc.identifier.scopusqualityQ1
dc.identifier.startpage4789
dc.identifier.urihttps://doi.org/10.1007/s10518-025-02234-6
dc.identifier.urihttps://hdl.handle.net/11129/11745
dc.identifier.volume23
dc.identifier.wosWOS:001534728100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofBulletin of Earthquake Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectSeismic optimization
dc.subjectCollapse margin ratio
dc.subjectReinforced concrete structures
dc.subjectFEMA P695 framework
dc.titleA multi-algorithm approach for optimizing collapse margin ratio in seismic design of reinforced concrete structures
dc.typeArticle

Files