An alternative to Ben-Or's lower bound for the knapsack problem complexity
| dc.contributor.author | Brimkov, VE | |
| dc.contributor.author | Dantchev, SS | |
| dc.date.accessioned | 2026-02-06T18:43:20Z | |
| dc.date.issued | 2002 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | In this paper, we study the algebraic complexity of the knapsack problem in the form a(T)x = 1, x is an element of Z(n) (KPR), and its Boolean version a(T)x = 1, x is an element of {0, 1}(n) (0/1-KPR), in the framework of a real number model of computation. We show that no algorithm for these problems can achieve a time bound o(n log n) (.) f(a(1),..., a(n)), where f is any arbitrary continuous function of n variables. This result complements the well-known Ben-Or's lower bound Omega(n(2)) [1]. (C) 2002 Elsevier Science Ltd. All rights reserved. | |
| dc.identifier.doi | 10.1016/S0893-9659(01)00116-1 | |
| dc.identifier.endpage | 191 | |
| dc.identifier.issn | 0893-9659 | |
| dc.identifier.issue | 2 | |
| dc.identifier.scopus | 2-s2.0-31244433609 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 187 | |
| dc.identifier.uri | https://doi.org/10.1016/S0893-9659(01)00116-1 | |
| dc.identifier.uri | https://hdl.handle.net/11129/13569 | |
| dc.identifier.volume | 15 | |
| dc.identifier.wos | WOS:000173785700011 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Pergamon-Elsevier Science Ltd | |
| dc.relation.ispartof | Applied Mathematics Letters | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | complexity lower bounds | |
| dc.subject | real number model | |
| dc.subject | knapsack problem | |
| dc.title | An alternative to Ben-Or's lower bound for the knapsack problem complexity | |
| dc.type | Article |










