A New Control Strategy for Three-Phase Shunt Active Power Filters Based on FIR Prediction

dc.contributor.authorKukrer, Osman
dc.contributor.authorKomurcugil, Hasan
dc.contributor.authorGuzman, Ramon
dc.contributor.authorde Vicuna, Luis Garcia
dc.date.accessioned2026-02-06T18:50:50Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this article, a new discrete-time control strategy for three-phase three-wire shunt active power filters (APFs) is presented, based on a mathematical model in the stationary reference frame. It involves a feedback-linearization-type approach to control the filter currents, whereby the voltage control loop is decoupled from the current control. The voltage control loop is for controlling the dc-side voltage of the pulsewidth modulation (PWM) converter, and employs a proportional-integral (PI) controller to generate the reference amplitude for the compensated grid currents. An important feature of the proposed control strategy is the compensation of the one-sampling-period delay caused by microcontroller computation using a finite impulse response (FIR) predictor. This predictor is designed to accomplish one-step-ahead prediction of the control variable, which is the PWM converter's switching function space vector. Furthermore, the FIR predictor is optimized so that the low-order harmonics in the control variable are predicted with minimal error. The proposed control strategy is analyzed to obtain the steady-state filter current error and ranges for the PI controller gains for stability. Simulation and experimental results are presented to show the effectiveness of the proposed shunt APF.
dc.description.sponsorshipMinistry of Science, Innovation and Universities of Spain; European Regional Development Fund [RTI2018-100732-B-C22]
dc.description.sponsorshipThis work was supported in part by the Ministry of Science, Innovation and Universities of Spain and in part by the European Regional Development Fund under Project RTI2018-100732-B-C22.
dc.identifier.doi10.1109/TIE.2020.3013761
dc.identifier.endpage7713
dc.identifier.issn0278-0046
dc.identifier.issn1557-9948
dc.identifier.issue9
dc.identifier.orcid0000-0003-2947-849X
dc.identifier.orcid0000-0002-4386-5800
dc.identifier.orcid0000-0003-4728-6416
dc.identifier.orcid0000-0002-3283-4400
dc.identifier.scopus2-s2.0-85111554534
dc.identifier.scopusqualityQ1
dc.identifier.startpage7702
dc.identifier.urihttps://doi.org/10.1109/TIE.2020.3013761
dc.identifier.urihttps://hdl.handle.net/11129/15065
dc.identifier.volume68
dc.identifier.wosWOS:000664002600001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Transactions on Industrial Electronics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectFinite impulse response filters
dc.subjectActive filters
dc.subjectSwitches
dc.subjectPower harmonic filters
dc.subjectVoltage control
dc.subjectCurrent control
dc.subjectHarmonic analysis
dc.subjectFinite impulse response (FIR) predictor
dc.subjectpredictive control
dc.subjectshunt active power filter (APF)
dc.titleA New Control Strategy for Three-Phase Shunt Active Power Filters Based on FIR Prediction
dc.typeArticle

Files