Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems

dc.contributor.advisorÜnveren, Ahmet
dc.contributor.authorHoloubi, Batoul Abdulmoti
dc.date.accessioned2020-10-23T07:18:28Z
dc.date.available2020-10-23T07:18:28Z
dc.date.issued2018
dc.date.submitted2018
dc.departmentEastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineeringen_US
dc.descriptionMaster of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2018. Supervisor: Assist. Prof. Dr. Ahmet Ünveren.en_US
dc.description.abstractDuring the past 20 years, the community of science have become more interested in Evolutionary Algorithms which have been used in many applications. This thesis proposes hybridized Particle Swarm Optimization (PSO) algorithm that targets to combine the original PSO with a simple local search technique (HPSO-FminLS). FminLS, have been used as a simple local search with original PSO for solving Learning-based-Real-Parameter Single Objective Optimization Problems (LbRPSOOP). These problems are provided in CEC2015 Congress on Evolutionary Computation. Technically, we solved CEC15 in dimensions D10, D30, D50 with HPSO-FminLS then developed 4 different versions by using local search and PSO algorithms. HPSO-FminLS reached optimal solution in Unimodal problems, and the near optimal solution in other problems.en_US
dc.description.abstractÖZ: Son 20 yılda, Bilim Topluluğu, birçok uygulamada kullanılan Metaheuristik yöntemler olarak kullanılan Evrim Algoritmalarına daha fazla ilgi duydu. Bu tez, orijinal Parçacık Sürüsü Optimizasyonu'nu (PSO) basit bir yerel arama tekniği ile birleştirmeyi hedefleyen melezleştirilmiş HPSO-FminLS algoritmasını öneriyor. FminLS, Öğrenme Tabanlı Gerçek Parametre Tek Hedefli Optimizasyon Problemlerini (LbRPSOOP) çözmek için orijinal PSO ile basit bir yerel arama olarak kullanılmıştır. Kullanılan problemler, CEC2015 Evrimsel Hesaplama Kongresi'nden sağlanmaktadır. Teknik olarak, HPSO-FminLS ile üç farklı boyutta, 10, 30 ve 50, CEC15'de verilen problemler, yerel arama ve PSO algoritmaları kullanarak 4 farklı versiyon ile çözülmüşlerdir. HPSO-FminLS, Unimodal problemlerde en iyi çözüme, diğer problemlerde ise en iyi çözüme kabuledilir bir yakınlıkta ulaşmıştır.en_US
dc.identifier.citationHoloubi, Batoul Abdulmoti. (2018). Hybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problems. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Computer Engineering, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/4676
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer Engineeringen_US
dc.subjectEvolutionary programming (Computer science)--Evolutionary computationen_US
dc.subjectEvolutionary Algorithmsen_US
dc.subjectLocal searchen_US
dc.subjectSingle Objective Problemsen_US
dc.titleHybrid PSO Algorithm for the Solution of Learningbased Real-Parameter Single Objective Optimization Problemsen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
holoubibatoul.pdf
Size:
2.05 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: