Limit-point criteria for superlinear differential equations

dc.contributor.authorMustafa, OG
dc.contributor.authorRogovchenko, YV
dc.date.accessioned2026-02-06T18:24:40Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractFor a nonlinear differential equation x + a(t)f(x) = 0, we obtain limit-point criteria by proving first stronger results which guarantee nonexistence of nontrivial bounded (uniformly continuous) L-2-solutions under milder restrictions on the coefficient a(t) and nonlinearity f(x).
dc.identifier.doi10.36045/bbms/1093351382
dc.identifier.endpage440
dc.identifier.issn1370-1444
dc.identifier.issn2034-1970
dc.identifier.issue3
dc.identifier.orcid0000-0002-6463-741X
dc.identifier.scopus2-s2.0-3142659747
dc.identifier.scopusqualityQ4
dc.identifier.startpage431
dc.identifier.urihttps://doi.org/10.36045/bbms/1093351382
dc.identifier.urihttps://hdl.handle.net/11129/10308
dc.identifier.volume11
dc.identifier.wosWOS:000224712100007
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherBelgian Mathematical Soc Triomphe
dc.relation.ispartofBulletin of the Belgian Mathematical Society-Simon Stevin
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectnonlinear differential equations
dc.subjectsecond-order
dc.subjectsquare integrable solutions
dc.subjectbounded solutions
dc.subjectasymptotic behavior
dc.subjectlimit-point/limit-eircle classification
dc.titleLimit-point criteria for superlinear differential equations
dc.typeArticle

Files