On naive Bayesian fusion of dependent classifiers

dc.contributor.authorAltinçay, H
dc.date.accessioned2026-02-06T18:40:18Z
dc.date.issued2005
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractin classifier combination, the relative values of a posteriori probabilities assigned to different hypotheses are more important than the accuracy of their estimates. Because of this, the independence requirement in naive Bayesian fusion should be examined from combined accuracy point of view. In this study, it is investigated whether there is a set of dependent classifiers which provides a better combined accuracy than independent classifiers when naive Bayesian fusion is used. For this purpose, two classes and three classifiers case is initially considered where the pattern classes are not equally probable. Taking into account the increased complexity in formulations, equal a priori probabilities are considered in the general case where N classes and K classifiers are used. The analysis carried out has shown that the combination of dependent classifiers using naive Bayesian fusion may provide much better combined accuracies compared to independent classifiers. (c) 2005 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.patrec.2005.05.003
dc.identifier.endpage2473
dc.identifier.issn0167-8655
dc.identifier.issn1872-7344
dc.identifier.issue15
dc.identifier.scopus2-s2.0-25844518769
dc.identifier.scopusqualityQ1
dc.identifier.startpage2463
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2005.05.003
dc.identifier.urihttps://hdl.handle.net/11129/13257
dc.identifier.volume26
dc.identifier.wosWOS:000232704100014
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofPattern Recognition Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectclassifier fusion
dc.subjectnaive Bayesian fusion
dc.subjectindependent classifiers
dc.subjectbest dependent classifiers
dc.titleOn naive Bayesian fusion of dependent classifiers
dc.typeArticle

Files