ANN Assisted Prediction of Weld Bead Geometry in Gas Tungsten Arc Welding of HSLA Steels
| dc.contributor.author | Iqbal, Asif | |
| dc.contributor.author | Khan, Saeed M. | |
| dc.contributor.author | Sahir, Mukhtar H. | |
| dc.date.accessioned | 2026-02-06T18:29:08Z | |
| dc.date.issued | 2011 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description | World Congress on Engineering (WCE 2011) -- JUL 06-08, 2011 -- Imperial Coll, London, UNITED KINGDOM | |
| dc.description.abstract | Weld bead geometry (front bead width and height, and back bead width and height) is a significant physical characteristic of a weldment. Several welding parameters such as welding speed, weld current, voltage, and shielding gas flow rate affect the weld bead geometry. Traditionally, an expert welder from his experience of trial and error selects a set of parameters that may yield fairly good results. However, the trial and error can be avoided, if a suitable automation tool can be developed, which could forecast the output from a set of desired parameters. Artificial neural net (ANN) was applied to predict the weld bead geometry in gas tungsten arc (GTA) welding of high strength low alloy (HSLA) steel. Back-propagation neural network algorithm has been followed to associate the welding process parameters with the weld bead geometry. | |
| dc.description.sponsorship | Int Assoc Engineers,IAENG, Soc Artificial Intelligence,IAENG, Soc Bioinformat,IAENG, Soc Computer Sci,IAENG, Soc Data Min,IAENG, Soc Elect Engn,IAENG, Soc Imagl Engn,IAENG, Soc Ind Engn,IAENG, Soc Informat Syst Engn,IAENG, Soc Internet Comput & Web Serv,IAENG, Soc Mech Engn,IAENG, Soc Operat Res,IAENG, Soc Sci Comput,IAENG, Soc Software Engn,IAENG, Soc Wireless Engn | |
| dc.identifier.endpage | 821 | |
| dc.identifier.isbn | 978-988-18210-6-5 | |
| dc.identifier.issn | 2078-0958 | |
| dc.identifier.orcid | 0000-0002-4372-8179 | |
| dc.identifier.orcid | 0000-0003-4891-3442 | |
| dc.identifier.scopus | 2-s2.0-80755174542 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 818 | |
| dc.identifier.uri | https://hdl.handle.net/11129/11276 | |
| dc.identifier.wos | WOS:000393011100162 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Int Assoc Engineers-Iaeng | |
| dc.relation.ispartof | World Congress on Engineering, Wce 2011, Vol I | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | neural nets | |
| dc.subject | learning | |
| dc.subject | back propagation | |
| dc.subject | welding parameters | |
| dc.title | ANN Assisted Prediction of Weld Bead Geometry in Gas Tungsten Arc Welding of HSLA Steels | |
| dc.type | Conference Object |










