Fractional Laguerre derivatives and associated differential equations

dc.contributor.authorFernandez, Arran
dc.contributor.authorTomovski, Zivorad
dc.date.accessioned2026-02-06T18:47:00Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractFractional versions of the Laguerre derivative were introduced in 2021 by Yakubovich, who defined both fractional integrals and fractional derivatives (of Riemann-Liouville type) within the Laguerre setting. We continue with the mathematical study of these operators: proving many equivalent formulae for them, introducing the corresponding Caputo-type Laguerre fractional derivatives, and finding eigenfunctions for the new operators. Applications of our work are given by solving several fractional differential equations involving Laguerre-type operators, their solutions often being expressible in terms of special functions such as the multi-index Mittag-Leffler function.
dc.identifier.doi10.1080/10652469.2025.2497443
dc.identifier.issn1065-2469
dc.identifier.issn1476-8291
dc.identifier.scopus2-s2.0-105004427625
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1080/10652469.2025.2497443
dc.identifier.urihttps://hdl.handle.net/11129/14179
dc.identifier.wosWOS:001484097000001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofIntegral Transforms and Special Functions
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectfractional calculus
dc.subjectfractional differential equations
dc.subjectLaguerre derivative
dc.subjectseparation of variables
dc.subjectcommutative operators
dc.titleFractional Laguerre derivatives and associated differential equations
dc.typeArticle

Files