Modified Szasz-Kantorovich operators with better approximation

dc.contributor.authorAktuglu, Huseyin
dc.contributor.authorKara, Mustafa
dc.contributor.authorBaytunc, Erdem
dc.date.accessioned2026-02-06T18:26:59Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, we introduce a new family of Szasz-Mirakjan Kantorovich type operators K-n,K-psi(f; x), depend on a function psi which satisfies some conditions. In this way we obtain all moments and central moments of the new operators in terms of two numbers M-1,M-psi and M-2,M-psi, which are integrals of psi and psi(2), respectively. This is a new approach to have better error estimation, because in the case of K-n,K-psi(1; x) = 1, the order of approximation to a function f by an operator K-n,K-psi( f ; x) is more controlled by the term Kn,psi((t-x)2; x). Since the different functions psi gives different values for M1,psi and M-2,M- psi, it is possible to search for a function psi with different values of M-1,M-psi and M-2,M- psi to make K-n,K-psi((t - x)(2); x) smaller. By using above approach, we show that there exist a function psi such that the operator K-n,K-psi(f; x) has better approximation then the classical Szasz-Mirakjan Kantorovich operators. We obtain some direct and local approximation properties of new operators K-n,K-psi(f; x) and we prove that our new operators have shape preserving properties. Moreover, we also introduced two different King-Type generalizations of our operators, one preserving x and the other preserving x(2) and we show that King-Type generalizations of K-n,K-psi(f; x) has better approximation properties than K-n,K-psi( f ; x) and than the classical Szasz-Mirakjan-Kantorovich operator. Furthermore, we illustrate approximation results of these operators graphically and numerically.
dc.identifier.doi10.2298/FIL2511833A
dc.identifier.endpage3850
dc.identifier.issn0354-5180
dc.identifier.issue11
dc.identifier.orcid0000-0002-0300-6817
dc.identifier.scopus2-s2.0-105003315704
dc.identifier.scopusqualityQ2
dc.identifier.startpage3833
dc.identifier.urihttps://doi.org/10.2298/FIL2511833A
dc.identifier.urihttps://hdl.handle.net/11129/10740
dc.identifier.volume39
dc.identifier.wosWOS:001470420400023
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherUniv Nis, Fac Sci Math
dc.relation.ispartofFilomat
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectModulus of continuity
dc.subjectPositive Linear Operators
dc.subjectRate of convergence
dc.subjectSzasz-Mirakjan Kantorovich operators
dc.subjectPolynomial Approximation
dc.subjectModulus of Continuity
dc.subjectShape-Preserving properties
dc.titleModified Szasz-Kantorovich operators with better approximation
dc.typeArticle

Files