Modified Szasz-Kantorovich operators with better approximation
| dc.contributor.author | Aktuglu, Huseyin | |
| dc.contributor.author | Kara, Mustafa | |
| dc.contributor.author | Baytunc, Erdem | |
| dc.date.accessioned | 2026-02-06T18:26:59Z | |
| dc.date.issued | 2025 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | In this paper, we introduce a new family of Szasz-Mirakjan Kantorovich type operators K-n,K-psi(f; x), depend on a function psi which satisfies some conditions. In this way we obtain all moments and central moments of the new operators in terms of two numbers M-1,M-psi and M-2,M-psi, which are integrals of psi and psi(2), respectively. This is a new approach to have better error estimation, because in the case of K-n,K-psi(1; x) = 1, the order of approximation to a function f by an operator K-n,K-psi( f ; x) is more controlled by the term Kn,psi((t-x)2; x). Since the different functions psi gives different values for M1,psi and M-2,M- psi, it is possible to search for a function psi with different values of M-1,M-psi and M-2,M- psi to make K-n,K-psi((t - x)(2); x) smaller. By using above approach, we show that there exist a function psi such that the operator K-n,K-psi(f; x) has better approximation then the classical Szasz-Mirakjan Kantorovich operators. We obtain some direct and local approximation properties of new operators K-n,K-psi(f; x) and we prove that our new operators have shape preserving properties. Moreover, we also introduced two different King-Type generalizations of our operators, one preserving x and the other preserving x(2) and we show that King-Type generalizations of K-n,K-psi(f; x) has better approximation properties than K-n,K-psi( f ; x) and than the classical Szasz-Mirakjan-Kantorovich operator. Furthermore, we illustrate approximation results of these operators graphically and numerically. | |
| dc.identifier.doi | 10.2298/FIL2511833A | |
| dc.identifier.endpage | 3850 | |
| dc.identifier.issn | 0354-5180 | |
| dc.identifier.issue | 11 | |
| dc.identifier.orcid | 0000-0002-0300-6817 | |
| dc.identifier.scopus | 2-s2.0-105003315704 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.startpage | 3833 | |
| dc.identifier.uri | https://doi.org/10.2298/FIL2511833A | |
| dc.identifier.uri | https://hdl.handle.net/11129/10740 | |
| dc.identifier.volume | 39 | |
| dc.identifier.wos | WOS:001470420400023 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Univ Nis, Fac Sci Math | |
| dc.relation.ispartof | Filomat | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Modulus of continuity | |
| dc.subject | Positive Linear Operators | |
| dc.subject | Rate of convergence | |
| dc.subject | Szasz-Mirakjan Kantorovich operators | |
| dc.subject | Polynomial Approximation | |
| dc.subject | Modulus of Continuity | |
| dc.subject | Shape-Preserving properties | |
| dc.title | Modified Szasz-Kantorovich operators with better approximation | |
| dc.type | Article |










