Korovkin-type theorems and applications

dc.contributor.authorMahmudov, Nazim I.
dc.date.accessioned2026-02-06T18:27:09Z
dc.date.issued2009
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractLet {T (n) } be a sequence of linear operators on C[0,1], satisfying that {T (n) (e (i) )} converge in C[0,1] (not necessarily to e (i) ) for i = 0,1,2, where e (i) = t (i) . We prove Korovkin-type theorem and give quantitative results on C (2)[0,1] and C[0,1] for such sequences. Furthermore, we define King's type q-Bernstein operator and give quantitative results for the approximation properties of such operators.
dc.description.sponsorshipMinistry of National Education and Culture of TRNC [MEKB-07-05]
dc.description.sponsorshipThe research is supported by the Ministry of National Education and Culture of TRNC under Project MEKB-07-05.
dc.identifier.doi10.2478/s11533-009-0006-7
dc.identifier.endpage356
dc.identifier.issn1895-1074
dc.identifier.issn1644-3616
dc.identifier.issue2
dc.identifier.scopus2-s2.0-67349204512
dc.identifier.scopusqualityN/A
dc.identifier.startpage348
dc.identifier.urihttps://doi.org/10.2478/s11533-009-0006-7
dc.identifier.urihttps://hdl.handle.net/11129/10809
dc.identifier.volume7
dc.identifier.wosWOS:000266334400015
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSciendo
dc.relation.ispartofCentral European Journal of Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectKorovkin approximation
dc.subjectPositive operator
dc.subjectq-Bernstein operators
dc.subjectKing's type q-Bernstein operator
dc.subjectq-operators
dc.titleKorovkin-type theorems and applications
dc.typeArticle

Files