Boosting hand vein recognition performance with the fusion of different color spaces in deep learning architectures

dc.contributor.authorBabalola, Felix Olanrewaju
dc.contributor.authorToygar, Onsen
dc.contributor.authorBitirim, Yiltan
dc.date.accessioned2026-02-06T18:35:42Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractHuman recognition and authentication through biometrics generally rely on feature extraction from images of physiological traits. These images can be represented in different color models. This study represents human palm vein images in five different color spaces (RGB, XYZ, LAB, YUV, and HSV) and combines their decisions in CNN models for person recognition. Color spaces are generally represented in three channels. This study identifies the channel with the highest contribution to pattern recognition in images and proposes to use only this channel per color space in the identification process instead of all three channels. The experiments confirm that channels representing how humans perceive colors are generally mostly responsible for features extracted from vein pattern biometrics. The proposed architecture is tested using modified AlexNet, VGG-19, and ResNet-50 Convolutional Neural Network (CNN) models on palm vein datasets from the FYO, PUT, and VERA databases. Experimental results showed considerable improvement in palm vein recognition compared to similar studies.
dc.identifier.doi10.1007/s11760-023-02671-3
dc.identifier.endpage4383
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.issue8
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.orcid0000-0003-2731-0693
dc.identifier.orcid0000-0002-1780-2806
dc.identifier.scopus2-s2.0-85164819102
dc.identifier.scopusqualityQ2
dc.identifier.startpage4375
dc.identifier.urihttps://doi.org/10.1007/s11760-023-02671-3
dc.identifier.urihttps://hdl.handle.net/11129/12042
dc.identifier.volume17
dc.identifier.wosWOS:001029617800002
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer London Ltd
dc.relation.ispartofSignal Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectPalm vein recognition
dc.subjectConvolutional neural networks
dc.subjectColor spaces
dc.subjectDecision-level fusion
dc.titleBoosting hand vein recognition performance with the fusion of different color spaces in deep learning architectures
dc.typeArticle

Files