PCA and LDA based face recognition using feedforward neural network classifier

dc.contributor.authorEleyan, Alaa
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:29:01Z
dc.date.issued2006
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Workshop on Multimedia Content Representation, Classification and Security (MRCS 2006) -- SEP 11-13, 2006 -- Istanbul, TURKEY
dc.description.abstractPrincipal component analysis (PCA) and Linear Discriminant Analysis (LDA) techniques are among the most common feature extraction techniques used for the recognition of faces. In this paper, two face recognition systems, one based on the PCA followed by a feedforward neural network (FFNN) called PCA-NN, and the other based on LDA followed by a FFNN called LDA-NN, are developed. The two systems consist of two phases which are the PCA or LDA preprocessing phase, and the neural network classification phase. The proposed systems show improvement on the recognition rates over the conventional LDA and PCA face recognition systems that use Euclidean Distance based classifier. Additionally, the recognition performance of LDA-NN is higher than the PCA-NN among the proposed systems.
dc.description.sponsorshipInt Assoc Pattern Recognit,Istanbul Tech Univ,TUBITAK
dc.identifier.endpage206
dc.identifier.isbn3-540-39392-7
dc.identifier.issn0302-9743
dc.identifier.orcid0000-0002-0644-8039
dc.identifier.scopus2-s2.0-33750992182
dc.identifier.scopusqualityQ3
dc.identifier.startpage199
dc.identifier.urihttps://hdl.handle.net/11129/11240
dc.identifier.volume4105
dc.identifier.wosWOS:000241429800027
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofMultimedia Content Representation, Classification and Security
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectAutomatic Recognition
dc.subjectEigenfaces
dc.titlePCA and LDA based face recognition using feedforward neural network classifier
dc.typeConference Object

Files